【引用本文】 郑奋, 刘琰, 张红清, . 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究[J]. 岩矿测试, 2019, 38(4): 438-448. doi: 10.15898/j.cnki.11-2131/td.201807310089
ZHENG Fen, LIU Yan, ZHANG Hong-qing. The Petrogeochemistry and Zircon U-Pb Age of Nephrite Placer Deposit in Xiuyan, Liaoning[J]. Rock and Mineral Analysis, 2019, 38(4): 438-448. doi: 10.15898/j.cnki.11-2131/td.201807310089

辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究

1. 

中国地质大学(北京)珠宝学院, 北京 100083

2. 

中国地质科学院地质研究所, 北京 100037

收稿日期: 2018-07-31  修回日期: 2019-01-25  接受日期: 2019-04-09

基金项目: 中国地质调查局"中国矿产地质志"二级项目(DD20160346, DD20190379);自然资源部中国地质调查局地质调查项目(DD20190060);国家自然科学基金项目(41772044)

作者简介: 郑奋, 研究生, 矿物学、岩石学、矿床学专业。E-mail:864902333@qq.com

通信作者: 刘琰, 副研究员, 矿物学、岩石学、矿床学专业, 主要从事稀土和稀有金属矿床研究。E-mail:ly@cags.ac.cn

The Petrogeochemistry and Zircon U-Pb Age of Nephrite Placer Deposit in Xiuyan, Liaoning

1. 

School of Gemology, China University of Geosciences(Beijing), Beijing 100083, China

2. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: LIU Yan, ly@cags.ac.cn

Received Date: 2018-07-31
Revised Date: 2019-01-25
Accepted Date: 2019-04-09

摘要:河磨玉是产于辽宁省岫岩县细玉沟沟谷及白沙河河谷底部和两岸阶地的和田玉,目前仅依据产出位置判断河磨玉来源于细玉沟沟头的原生和田玉矿床,但河磨玉的矿物组成、地球化学特征、年龄等并不清楚,与原生和田玉是否一致有待深入研究。本文主要通过电子探针成分分析、全岩主微量分析、氢氧同位素分析、锆石SHRIMP U-Pb定年等测试方法对河磨玉的矿物组成、地球化学特征及年龄进行研究,确定河磨玉与老玉是否为相同成因。结果表明:①河磨玉中主要矿物为透闪石、阳起石,次要矿物为透辉石、磷灰石、绿泥石、绿帘石、石英、榍石、锆石、磁铁矿、菱锌矿等。②河磨玉的成因类型为大理岩型。河磨玉稀土总量低,相对富集轻稀土,普遍显示Eu正异常。③河磨玉中透闪石δ18O值为8.00‰~10.60‰,δD值为-94.95‰~-75.20‰,成矿流体中的水主要为岩浆水。④河磨玉中的岩浆锆石U-Pb年龄为220.8±7.6Ma(n=4,MSWD=2.3),代表河磨玉成玉年龄的上限。本文提出河磨玉的稀土分配特征、氢氧同位素组成、成矿流体来源及形成年龄均与原生和田玉不一致,河磨玉并非来源于细玉沟沟头的原生和田玉。

关键词: 和田玉, 岩相学, 地球化学特征, 电子探针, 电感耦合等离子体质谱, SHRIMP锆石U-Pb年龄,

要点

(1) 河磨玉的成因类型为大理岩型,成矿流体中的水主要为岩浆水。

(2) 河磨玉成玉年龄上限为220.8±7.6Ma。

(3) 河磨玉并非来源于细玉沟沟头的原生和田玉。

The Petrogeochemistry and Zircon U-Pb Age of Nephrite Placer Deposit in Xiuyan, Liaoning

ABSTRACT

BACKGROUND:

The Xiuyan placer nephrite is located in the Xiyu gully, Baisha river valley and terrace, located in Xiuyan, Liaoning Province. Currently, the primary nephrite in the Xiyu gully is regarded as the Xiuyan placer nephrite's primary deposit according to location. However, the mineral composition, geochemical characteristics and age of the placer nephrite is unknown; whether they are consistent with primary nephrite needs to be studied further.

OBJECTIVES:

To confirm whether the Xiuyan placer nephrite is from primary nephrite by investigating the mineral composition, geochemical characteristics and age of the Xiuyan placer nephrite.

METHODS:

Electron microprobe analysis (EMPA), inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), stable isotope mass spectrometry and zircon SHRIMP U-Pb dating were employed.

RESULTS:

Primary minerals of the Xiuyan placer nephrite were tremolite, actinolite, whereas secondary minerals were diopside, apatite, chlorite, epidote, quartz, titanite, zircon, magnetite, and smithsonite. The Xiuyan placer nephrite was dolomite-related nephrite. Its total rare earth element (REE) was low with LREE enrichment and positive Eu anomaly. The δ18O and δD isotope compositions of nephrite were from 8.00‰ to 10.60‰ and from -94.75‰ to -75.20‰, respectively. Water in ore-forming fluids was mainly magmatic water. Zircon U-Pb age of the placer nephrite was 220.8±7.6Ma, which suggested that the placer nephrite formed after this time.

CONCLUSIONS:

The Xiuyan placer nephrite is different from primary nephrite in bulk-rock REE pattern, hydrogen and oxygen isotope compositions, and source of ore-forming fluids and age, which may indicate that the placer nephrite is not derived from the original nephrite in the Xiyu gully.

KEY WORDS: Xiuyan, nephrite, petrography, geochemical characteristics, electron microprobe, inductively coupled plasma-mass spectrometry, SHRIMP U-Pb age

HIGHLIGHTS

(1) The Xiuyan placer nephrite was dolomite-related nephrite and the water in ore-forming fluid was mainly from magmatic water.

(2) The Xiuyan placer nephrite was formed after 220.8±7.6Ma.

(3) The Xiuyan placer nephrite was not derived from the primary nephrite in the Xiyu gully.

本文参考文献

[1]

Harlow G E, Sorensen S S. Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47(2): 113-146. doi: 10.2747/0020-6814.47.2.113

[2]

Liu Y, Zhang R Q, Zhang Z Y, et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215: 128-144. doi: 10.1016/j.lithos.2014.11.002

[3]

Liu Y, Zhang R Q, Abuduwayiti M, et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72: 699-727. doi: 10.1016/j.oregeorev.2015.08.023

[4]

Yui T F, Kwon S T. Origin of a dolomite-related jade deposit at Chuncheon, Korea[J]. Economic Geology, 2002, 97(3): 593-601.

[5]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Journal of Asian Earth Sciences, 2011, 42(3): 440-451. doi: 10.1016/j.jseaes.2011.05.012

[6]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petro-genesis of placer nephrite from Hetian, Xinjiang, Northwest China[J]. Ore Geology Reviews, 2011, 41(1): 122-132.

[7]

刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489.

Liu X F, Zhang H Q, Liu Y, et al. Mineralogical characteristics and genesis of green nephrite from the world[J]. Rock and Mineral Analysis, 2018, 37(5): 479-489.

[8]

Grapes R H, Yun S T. Geochemistry of a New Zeland nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53: 413-426. doi: 10.1080/00288306.2010.514929

[9]

Kostov R I, Protochristov C, Stoyanov C, et al. Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from South-West Bulgaria[J].Geoarchaeology:An International Journal, 2012, 27: 457-469. doi: 10.1002/gea.21417

[10]

Siqin B, Qian R, Zhuo S, et al. Glow discharge mass spectrometry studies on nephrite minerals formed by different metal logenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309: 206-211. doi: 10.1016/j.ijms.2011.10.003

[11]

Barnes G L. Understanding Chinese jade in a world con-text[J].Journal of the British Academic, 2018, 6: 1-63.

[12]

王时麒,赵朝洪,于洸. 中国岫岩玉[M] . 北京: 科学出版社, 2007

Wang S Q,Zhao C H,Yu G. Xiuyan Jades in China[M] . Beijing: Science Press, 2007
[13]

王时麒, 董佩信. 岫岩玉的种类、矿床地质特征及成因[J]. 地质与资源, 2011, 20(5): 321-331. doi: 10.3969/j.issn.1671-1947.2011.05.001

Wang S Q, Dong P X. Classification, geologic characteristics and origin of the jade from Xiuyan, Liaoning Province, China[J].Geology and Resources, 2011, 20(5): 321-331. doi: 10.3969/j.issn.1671-1947.2011.05.001

[14]

丘志力, 江启云, 落汗, 等. 辽宁岫岩河磨玉和老玉(闪石玉)中石墨包体的拉曼光谱及其应用[J]. 光谱学与光谱分析, 2010, 30(11): 2985-2988. doi: 10.3964/j.issn.1000-0593(2010)11-2985-04

Qiu Z L, Jiang Q Y, Luo H, et al. Raman spectra and its application of graphite enclaves in nephrite-jades in Xiuyan, Liaoning[J].Spectroscopy and Spectral Analysis, 2010, 30(11): 2985-2988. doi: 10.3964/j.issn.1000-0593(2010)11-2985-04

[15]

Clayton R N, Mayeda T K. The use of bromine penta-fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27(1): 43-52. doi: 10.1016/0016-7037(63)90071-1

[16]

Friedman I. Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4(1-2): 89-103. doi: 10.1016/0016-7037(53)90066-0

[17]

Black L P, Kamo S L, Allen C M, et al. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochrono-logy[J]. Chemical Geology, 2003, 200(1): 155-170.

[18]

Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x

[19]

Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology:A critical appraisal of four zircon standards[J].Chemical Geology, 2003, 200: 171-188. doi: 10.1016/S0009-2541(03)00166-9

[20]

Ludwig K R.SQUID 1.02, A User'S Manual[M].Ber-keley Geochronology Center Special Publication No.2.2455 Ridge Road, Berkeley, CA 94709, USA, 2002.

[21]

Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth & Planetary Science Letters, 1975, 26: 207-221.

[22]

Adamo I, Bocchio R. Nephrite jade from Val Malenco, Italy:Review and update[J]. Gems and Gemology, 2013, 49: 98-106.

[23]

Yui T F, Yeh H W, Wang L C, et al. Stable isotope studies of nephrite deposits from Fengtien, Taiwan[J].Geochimica et Cosmochimica Acta, 1988, 52: 593-602. doi: 10.1016/0016-7037(88)90321-3

[24]

郑永飞, 徐宝龙, 周根陶, 等. 矿物稳定同位素地球化学研究[J]. 地学前缘, 2000, 7(2): 299-320. doi: 10.3321/j.issn:1005-2321.2000.02.001

Zheng Y F, Xu B L, Zhou G T, et al. Geochemical studies of stable isotopes in minerals[J].Earth Science Frontiers, 2000, 7(2): 299-320. doi: 10.3321/j.issn:1005-2321.2000.02.001

[25]

Graham C H, Harmon R S, Sheppard S M F, et al. Experi-mental hydrogen isotope studies:Hydrogen isotope exchange between amphilbole and water[J].American Mineralogist, 1984, 69: 128-138.

[26]

Taylor Jr H P.Oxygen and Hydrogen Isotope Relation-ships in Hydrothermal Mineral Deposits[C]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits (3rd Edition).New York: Wiley-Interscience, 1997: 229-302.

[27]

Gil G, Barnes J D, Boschi C, et al. Nephrite from Złoty Stok (Sudetes, SW Poland):Petrological, geochemical and isotopic evidence for a dolomite-related origin[J].The Canadian Mineralogist, 2015, 53(3): 533-556.

[28]

李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 33(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001

Li C M. A review on the minerageny and situ microanalytical dating techniques of zircons[J].Geological Survey and Research, 2009, 33(3): 161-174. doi: 10.3969/j.issn.1672-4135.2009.03.001

[29]

李大中, 于士祥, 王泽, 等. 辽宁岫岩地区岫玉成矿规律探讨[J]. 地质找矿论丛, 2013, 28(2): 249-255.

Li D Z, Yu S X, Wang Z, et al. Discussion on the jade-forming regularity of Xiuyan jade in Xiuyan area, Liaoning Province[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(2): 249-255.

[30]

刘喜锋, 刘琰, 李自静, 等. 新疆皮山镁质矽卡岩矿床(含糖玉)成因及锆石SHRIMP U-Pb定年[J]. 岩石矿物学杂志, 2017, 36(2): 259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

Liu X F, Liu Y, Li Z J, et al. The genesis of Mg-skarn deposit (bearing brown nephrite) and its Ar-Ar dating of phlogopite and SHRIMP U-Pb dating of zircon, Pishan, Xinjiang[J].Acta Petrologica et Mineralogica, 2017, 36(2): 259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

[31]

张勇, 魏华, 陆太进, 等. 新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J]. 岩矿测试, 2018, 37(6): 695-704.

Zhang Y, Wei H, Lu T J, et al. The genesis and LA-ICP-MS zircon ages of the Omixia nephrite deposit, Xinjiang, China[J]. Rock and Mineral Analysis, 2018, 37(6): 695-704.

[32]

贾玉衡, 刘喜锋, 刘琰, 等. 新疆且末碧玉矿的成因研究[J]. 岩石矿物学杂志, 2018, 37(5): 824-838. doi: 10.3969/j.issn.1000-6524.2018.05.008

Jia Y H, Liu X F, Liu Y, et al. Petrogenesis of the serpentinite-related nephrite deposit in Qiemo County, Xinjiang[J].Acta Petrologica et Mineralogica, 2018, 37(5): 824-838. doi: 10.3969/j.issn.1000-6524.2018.05.008

相似文献(共19条)

[1]

梁细荣, 姚立, 田地. 电子探针背景扣除和谱线干扰修正方法的进展. 岩矿测试, 2008, 27(1): 49-54.

[2]

刘明华, 杨晓波, 佟成冶, 马力, 乌爱军. 辽宁省浑河流域底质中重金属元素地球化学特征. 岩矿测试, 2008, 27(3): 184-188.

[3]

张勇, 魏华, 陆太进, 陈华, 韩冬, 冯晓燕, 买托乎提·阿不都瓦衣提. 新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究. 岩矿测试, 2018, 37(6): 695-704. doi: 10.15898/j.cnki.11-2131/td.201801170007

[4]

周剑雄, 陈振宇, . 独居石的电子探针钍—铀—铅化学测年. 岩矿测试, 2002, (4): 241-246.

[5]

王轶, 常娜, 刘亚非, 赵慧博, 刘三. 应用X射线衍射-激光拉曼-电子探针等分析测试技术研究旬阳朱砂玉的矿物学特征. 岩矿测试, 2014, 33(6): 802-807. doi: 10.15898/j.cnki.11-2131/td.2014.06.007

[6]

杜安道, 屈文俊. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 2003, (4): 254-257262.

[7]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[8]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[9]

杨刚, 杜安道, 屈文俊, 陈江峰, 梁树平. 两种质谱仪在辉钼矿铼-锇年龄测定中的应用比较. 岩矿测试, 2004, (4): 268-272.

[10]

谢奋全, 王黎栋, 李琦, 石朝霞, 陈学兵, 韦岸. 阿拉善宗乃山岩体东南缘花岗岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩矿测试, 2015, 34(3): 375-382. doi: 10.15898/j.cnki.11-2131/td.2015.03.019

[11]

李欣桐, 先怡衡, 樊静怡, 张璐繁, 郭靖雯, 高占远, 温睿. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征. 岩矿测试, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102

[12]

赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 王守光, 刘利双, 赵丽君. 内蒙古黄花滩铜镍矿区辉长岩LA-ICP-MS锆石U-Pb定年及地球化学特征. 岩矿测试, 2016, 35(2): 208-216. doi: 10.15898/j.cnki.11-2131/td.2016.02.014

[13]

苏晓云, 刘善宝, 高虎, 王成辉, 刘战庆, 胡正华, 刘建光, 陈国华, 万浩章. 基于电感耦合等离子体质谱/光谱技术研究朱溪钨铜矿床原生晕地球化学特征. 岩矿测试, 2015, 34(2): 252-260. doi: 10.15898/j.cnki.11-2131/td.2015.02.017

[14]

郑巧荣. 电子探针能谱矿物定量分析. 岩矿测试, 1994, (2): 105-108.

[15]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[16]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

[17]

荆国强, 廉康, 胡菲菲, 李磊, 杜亚龙. 利用电子探针研究甘肃陇南赵家庄金矿载金矿物特征. 岩矿测试, 2018, 37(5): 490-498. doi: 10.15898/j.cnki.11-2131/td.201707170119

[18]

朱继浩, 初凤友. 单颗粒电子探针能谱定量分析方法研究进展. 岩矿测试, 2010, 29(6): 746-754.

[19]

李增胜, 吴敏, 徐爽, 张燕挥, 迟乃杰, 林培军. 应用电子探针技术研究山东金青顶金矿床碲化物特征. 岩矿测试, 2018, 37(3): 266-274. doi: 10.15898/j.cnki.11-2131/td.201709130150

计量
  • PDF下载量(13)
  • 文章访问量(194)
  • HTML全文浏览量(38)
  • 被引次数(0)
目录

Figures And Tables

辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究

郑奋, 刘琰, 张红清