【引用本文】 宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036
SONG Yan-jun, LI Gan-yu, ZHANG Jian, et al. Mineralogical Characteristics and Coloration Mechanism of Yellow-Green Alunite Jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036

黄绿色明矾石玉的矿物学特征及颜色成因研究

1. 

河北地质大学宝石与材料工艺学院, 河北 石家庄 050031

2. 

河北地质大学珠宝检测中心, 河北 石家庄 050031

3. 

河北地质大学教学发展中心, 河北 石家庄 050031

4. 

河北地质大学资源学院, 河北 石家庄 050031

5. 

河北省地质环境监测院, 河北 石家庄 050031

收稿日期: 2020-03-16  修回日期: 2020-04-20  接受日期: 2020-06-02

基金项目: 中央引导地方科技发展专项(19944903G);河北省高等教育教学改革研究与实践项目(2019GJJG297);河北地质大学博士科研启动资金(BQ2018017)

作者简介: 宋彦军, 博士, 讲师, 从事宝石及矿物材料研究。E-mail:728225185@qq.com

Mineralogical Characteristics and Coloration Mechanism of Yellow-Green Alunite Jade

1. 

College of Gemological and Material Techniques, Hebei GEO University, Shijiazhuang 050031, China

2. 

Gemstone Testing Center of Hebei GEO University, Shijiazhuang 050031, China

3. 

Teaching Development Center, Hebei GEO University, Shijiazhuang 050031, China

4. 

College of Resource, Hebei GEO University, Shijiazhuang 050031, China

5. 

Geological Environmental Monitoring Institute of Hebei Province, Shijiazhuang 050031, China

Received Date: 2020-03-16
Revised Date: 2020-04-20
Accepted Date: 2020-06-02

摘要:黄绿色明矾石玉作为近年来市场上新出现的玉石品种,目前有关其宝石矿物学特征的研究相对不足,为其科学鉴定和质量评价造成一定困难。为此,本文采用红外光谱、X射线粉晶衍射、拉曼光谱、扫描电镜、激光剥蚀电感耦合等离子体质谱及紫外可见光谱等测试技术,从矿物组成、显微结构、化学成分等方面对黄绿色明矾石玉进行系统研究,并分析其颜色成因。结果表明:黄绿色明矾石玉的主要矿物组成为明矾石,未见其他矿物成分;玉石整体呈隐晶质结构,粒尺寸小于5μm,这是样品呈现细腻玉石质感的主要原因,但由于缺少如纤维状或鳞片状交织结构,韧性相对较差;黄绿色明矾石玉主要化学成分为O、Al、S、K,此外过渡金属元素V、Fe、Cr含量较高,平均含量分别为23591.52μg/g、4717.99μg/g、2077.67μg/g,结合紫外可见光谱测试存在的500nm以下和以826nm为中心的吸收,认为其黄绿色形成与V3+、Cr3+和Fe3+进入明矾石晶格中类质同相替代Al3+有关;明矾石玉黄褐色风化皮结构相对较粗,主要组成矿物为明矾石和石英,含少量针铁矿和极少量锐钛矿,其黄褐色主要受以针铁矿为主的表生褐铁矿浸染所致。本研究基本明确了黄绿色明矾石玉的宝石矿物学特征及其致色机理,可为今后该玉石的科学鉴定和质量评价提供数据支持。

关键词: 明矾石玉, 矿物组成, 显微结构, 颜色成因, 电感耦合等离子体质谱法, 紫外可见光谱法

要点

(1) 对黄绿色明矾石玉的矿物组成、显微结构、化学成分等性质进行了系统分析。

(2) 明矾石玉呈隐晶质结构,晶粒尺寸小于5μm。

(3) V3+、Fe3+和Cr3+对Al3+的类质同相替代是导致黄绿色形成的主要原因。

Mineralogical Characteristics and Coloration Mechanism of Yellow-Green Alunite Jade

ABSTRACT

BACKGROUND:

As a new kind of jade, yellow-green alunite jade is difficult to positively identify and evaluate due to the lack of research. Yellow-green alunite jade is a new type of jade that has appeared on the market in recent years. At present, there is relatively insufficient research on its gemological mineralogical characteristics, which makes it difficult for its scientific identification and quality evaluation.

OBJECTIVES:

To study the mineralogical characteristics and coloration mechanism of yellow-green alunite jade.

METHODS:

Infrared spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscope, laser ablation-inductively coupled plasma-mass spectrometry and ultraviolet-visible spectroscopy were applied to analyze the mineral component, microtexture, and chemical composition.

RESULTS:

The main mineral component of yellow-green alunite jade was alunite with a cryptocrystalline texture and grain size of less than 5μm. The very fine texture identified it as a delicate jade, but due to lack of interwoven fibric or scaly texture, its toughness was relatively poor. The alunite jade was composed of O, Al, S and K. The contents of transition metals such as V, Fe, Cr were relatively high, with average contents of 23591.52μg/g, 4717.99μg/g and 2077.67μg/g, respectively. Combined with the absorption spectrum in the ultraviolet region of 500nm and 826nm in the ultraviolet-visible spectroscopy, it was concluded that the isomorphous substitution of Al3+ by V3+, Cr3+ and Fe3+ was the main cause of the yellow-green color. The texture of weathering crust of alunite jade was relatively coarse. The mineral components were alunite, quartz, goethite with minor anatase. Yellowish-brown color of weathering crust was due to the serious pigmentation by limonite, and especially goethite.

CONCLUSIONS:

The study confirmed the mineralogical characteristics and coloration mechanism of yellow-green alunite jade, which provides a theoretical basis for the scientific identification and further quality evaluation.

KEY WORDS: alunite jade, mineral component, micro texture, coloration mechanism, inductively coupled plasma-mass spectrometry, ultraviolet-visible spectroscopy

HIGHLIGHTS

(1) The mineral component, microtexture, and chemical composition of yellow-green alunite jade were analyzed.

(2) Alunite jade showed a cryptocrystalline texture, and the alunitegrains were less than 5μm in size.

(3) Isomorphous substitution of Al3+ by V3+, Fe3+ and Cr3+ was the main cause of the yellow-green color.

本文参考文献

[1]

王濮,潘兆橹,翁玲宝. 系统矿物学[M] . 北京: 地质出版社, 1982: 286-287.

Wang P,Pan Z L,Weng L B. Systematic mineralogy[M] . Beijing: Geological Press, 1982: 286-287.
[2]

李达, 蒋开喜, 蒋训雄, 等. 明矾石焙砂提取硫酸钾的工艺研究[J]. 矿冶, 2016, 25(5): 42-45.

Li D, Jiang K X, Jiang X X, et al. Study on the technology of abstracting potassium sulfate from alunite calcine[J]. Mining and Metallurgy, 2016, 25(5): 42-45.

[3]

吕惠进. 浙江省明矾石矿产资源及其开发利用[J]. 矿业研究与开发, 2004, 24(2): 30-33.

Lü H J. The alunite resource and its exploitation in Zhejiang Province[J]. Mining Research and Development, 2004, 24(2): 30-33.

[4]

陈波, 涂剑锋, 邹来昌, 等. 紫金山尾矿回收明矾石与地开石的浮选试验研究[J]. 有色金属(选矿部分), 2014, 73(6): 62-65.

Chen B, Tu J F, Zou L C, et al. Experimental study on flotation of alunite and dickite from copper tailings in Zijinshan[J]. Nonferrous Metals (Mineral Processing Section), 2014, 73(6): 62-65.

[5]

王晓琳, 姬长生, 任海兵, 等. 我国明矾石资源综合利用现状与发展前景研究[J]. 中国矿业, 2010, 29(4): 19-21.

Wang X L, Ji C S, Ren H B, et al. A study of present situation of comprehensive utilization and development prospect of alunite in China[J]. China Mining Magazine, 2010, 29(4): 19-21.

[6]

旷戈, 李付杰, 刘瑜, 等. 明矾石综合利用技术研究进展[J]. 金属矿山, 2017, 55(11): 128-132.

Kuang G, Li F J, Liu Y, et al. Research progress on the comprehensive utilization of alunite[J]. Metal Mine, 2017, 55(11): 128-132.

[7]

Jambor J L. Nomenclature of the alunite supergroup[J]. The Canadian Mineralogist, 1999, 37(6): 1323-1341.

[8]

Sato E, Nakai I, Miyawaki R, et al. Crystal structures of alunite family minerals:Beaverite, corkite, alunite, natroalunite, jarosite, svanbergite, and woodhouseite[J]. Journal of Mineralogy and Geochemistry, 2009, 185(3): 313-322.

[9]

Desborough G A, Smith K S, Lowers H A, et al. Minera-logical and chemical characteristics of some natural jarosites[J].Geochimica et Cosmochimica Acta, 2010, 74(3): 1041-1056. doi: 10.1016/j.gca.2009.11.006

[10]

Frost R L, Wills R A, Weier M L, et al. A Raman spectroscopic study of alunites[J].Journal of Molecular Structure, 2006, 785(1-3): 123-132. doi: 10.1016/j.molstruc.2005.10.003

[11]

Majzlan J, Speziale S, Duffy T S, et al. Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6[J]. Physics & Chemistry of Minerals, 2006, 33(8): 567-573.

[12]

Papike J J, Karner J M, Spilde M N, et al. Terrestrial analogs of martian sulfates:Major and minor element systematics of alunite-jarosite from Goldfield, Nevada[J].American Mineralogist, 2006, 91(7): 1197-1200. doi: 10.2138/am.2006.2257

[13]

Nielsen U G, Majzlan J, Phillips B, et al. Characterization of defects and the local structure in natural and synthetic alunite (K, Na, H3O)Al3(SO4)2(OH)6 by multi-nuclear solid-state NMR spectroscopy[J].American Mineralogist, 2007, 92(4): 587-597. doi: 10.2138/am.2007.2414

[14]

辛秀, 王翠芝. 福建紫金山金铜矿明矾石的流体包裹体特征[J]. 现代地质, 2014, 28(1): 42-50.

Xin X, Wang C Z. Fluid inclusion characteristics of alunite in Zijinshan gold-copper deposit, Fujian Province[J]. Geoscience, 2014, 28(1): 42-50.

[15]

Bishop J L, Murad E. The visible and infrared spectral properties of jarosite and alunite[J].American Mineralogist, 2005, 90(7): 1100-1107. doi: 10.2138/am.2005.1700

[16]

王翠芝, 张文媛. 紫金山金铜矿明矾石的红外光谱及XRD特征[J]. 光谱学与光谱分析, 2013, 33(7): 1969-1972.

Wang C Z, Zhang W Y. Infrared spectra and XRD characteristics of alunite in the Zijinshan gold-copper deposit[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1969-1972.

[17]

戴慧, 张青, 蒋小平, 等. 昌化明矾石石英地鸡血石的宝石矿物学特征[J]. 宝石和宝石学杂志, 2011, 13(2): 27-30.

Dai H, Zhang Q, Jiang X P, et al. Gemmological and mineralogical characteristics of chicken-blood stone of alunite and quartz "Di" from Changhua[J]. Journal of Gems & Gemmology, 2011, 13(2): 27-30.

[18]

韩孝朕, 郭正也, 康燕, 等. 拉曼光谱在鸡血石鉴定中的应用[J]. 光学学报, 2016, 35(1): 438-445.

Han X Z, Guo Z Y, Kang Y, et al. Application of Raman spectroscopy in certification of chicken-blood stones[J]. Acta Optica Sinica, 2016, 35(1): 438-445.

[19]

孙丽华, 孙淼. 两种与绿松石"菜籽黄"品种相似玉石的鉴定特征[J]. 岩石矿物学杂志, 2016, 35(Supplement 1): 61-66.

Sun L H, Sun M. Identification of two kinds of jade similar to turquoise "Rapeseed Yellow" varieties[J]. Acta Petrologica et Mineralogica, 2016, 35(Supplement 1): 61-66.

[20]

陈全莉, 刘衔宇, 金文靖, 等. 白-黄色系绿松石"伴生矿"的红外光谱表征及其意义[J]. 光谱学与光谱分析, 2018, 38(10): 102-107.

Chen Q L, Liu X Y, Jin W J, et al. A study on IR absorption spectroscopy and XRD characteristics of white and yellow natural turquoise associated minerals[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 102-107.

[21]

卢琪, 吴瑞华. 昌化田黄鸡血石的矿物学特征研究[J]. 岩石矿物学杂志, 2010, 29(Supplement 1): 56-61.

Lu Q, Wu R H. A mineralogical study of Changhua Tianhuang chicken-blood stone[J]. Acta Petrologica et Mineralogica, 2010, 29(Supplement 1): 56-61.

[22]

彭玉旋. 红外光谱在几种相似硫酸盐矿物判别中的应用[J]. 新疆地质, 2015, 33(1): 130-133.

Peng Y X. The application of distinguishing several similar sulfate minerals with infrared spectra[J]. Xinjiang Geology, 2015, 33(1): 130-133.

[23]

李建军, 刘晓伟, 王岳, 等. 不同结晶程度SiO2的红外光谱特征及其意义[J]. 红外, 2010, 31(12): 31-35.

Li J J, Liu X W, Wang Y, et al. Infrared spectral features of SiO2 with different crystallinity and their implications[J]. Infrared, 2010, 31(12): 31-35.

[24]

周丹怡, 陈华, 陆太进, 等. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系[J]. 岩矿测试, 2015, 34(6): 652-658.

Zhou D Y, Chen H, Lu T J, et al. Study on the relationship between the relative content of moganite and the crystallinity of quartzite jade by Raman scattering spectroscopy, infrared absorption spectroscopy and X-ray diffraction techniques[J]. Rock and Mineral Analysis, 2015, 34(6): 652-658.

[25]

张妮, 林春明. X射线衍射技术应用于宝石鉴定、合成及晶体结构研究进展[J]. 岩矿测试, 2016, 35(3): 217-228.

Zhang N, Lin C M. Review on the application of X-ray diffraction in gem identification, synthesis and crystal structure research[J]. Rock and Mineral Analysis, 2016, 35(3): 217-228.

[26]

Murphy P J, Smith A M L, Hudson-Edwards K A, et al. Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+ and V3+ at the B site[J].The Canadian Mineralogist, 2009, 47(3): 663-681. doi: 10.3749/canmin.47.3.663

[27]

Lane M D. Mid-infrared emission spectro-scopy of sulfate and sulfate-bearing minerals[J]. American Mineralogist, 2007, 92(1): 1-18.

[28]

农佩臻, 周征宇, 赖萌, 等. 甘肃马衔山软玉的宝石矿物学特征[J]. 矿物学报, 2019, 39(3): 327-333.

Nong P Z, Zhou Z Y, Lai M, et al. Gemological and mineralogical characteristics of nephrite from the Maxianshan area in Gansu Province, China[J]. Acta Mineralogica Sinica, 2019, 39(3): 327-333.

[29]

Yin Z W, Jiang C, Santosh M, et al. Nephrite jade from Guangxi Province, China[J]. Gems & Gemology, 2014, 50(3): 228-235.

[30]

汤超, 廖宗廷, 钟倩, 等. 新疆软玉仔料中黑色树枝状物质的拉曼光谱和显微结构特征[J]. 光谱学与光谱分析, 2017, 37(2): 456-460.

Tang C, Liao Z T, Zhong Q, et al. Raman spectra and microstructure characteristics of dendrite in Xingjiang nephrite gravel[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 456-460.

[31]

韩文, 洪汉烈, 吴钰, 等. 和田玉糖玉的致色机理研究[J]. 光谱学与光谱分析, 2013, 33(6): 1446-1450.

Han W, Hong H L, Wu Y, et al. Color genesis of brown jade from Hetian nephrite[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1446-1450.

[32]

宋彦军, 王礼胜, 刘斯明, 等. 泰山产红褐色玉石的矿物学特征及其致色机理研究[J]. 硅酸盐通报, 2014, 33(1): 74-78.

Song Y J, Wang L S, Liu S M, et al. Mineralogical characteristics and coloration mechanism research of reddish brown "Taishan" jade[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 74-78.

[33]

李欣桐, 先怡衡, 樊静怡, 等. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征[J]. 岩矿测试, 2019, 38(4): 373-381.

Li X T, Xian Y H, Fan J Y, et al. Application of EMPA-XRD-SEM to study the mineralogical characteristics of turquoise from Xichuan, Henan Province[J]. Rock and Mineral Analysis, 2019, 38(4): 373-381.

[34]

张勇, 周丹怡, 陈华, 等. 应用同步辐射技术解析黄色-红色石英质玉石中的致色矿物[J]. 岩矿测试, 2016, 35(5): 513-520.

Zhang Y, Zhou D Y, Chen H, et al. Investigation of color causing minerals in yellow-red colored quartzite jade using the synchrotron radiation technique[J]. Rock and Mineral Analysis, 2016, 35(5): 513-520.

[35]

张敏, 聂爱国, 张竹如, 等. 贵州晴隆沙子锐钛矿矿床与黔西南红土型金矿床的成矿差异性[J]. 地质科技情报, 2016, 35(5): 126-130.

Zhang M, Nie A G, Zhang Z R, et al. Metallogenic difference between Qinglong Shazi anatase deposits and lateritic gold deposits in southwestern Guizhou Province[J]. Geological Science and Technology Information, 2016, 35(5): 126-130.

[36]

徐文静, 陈涛, 姚春茂, 等. 老挝田黄石的宝石学与矿物学特征[J]. 岩石矿物学杂志, 2016, 35(2): 147-158.

Xu W J, Chen T, Yao C M, et al. Gemological and mineralogical characteristics of Laos Tianhuang stone[J]. Acta Petrologica et Mineralogica, 2016, 35(2): 147-158.

[37]

罗远飞, 余晓艳, 周越刚, 等. 陕西洛南绿松石的结构构造特征研究[J]. 岩石矿物学杂志, 2017, 36(1): 115-123.

Luo Y F, Yu X Y, Zhou Y G, et al. A study of texture and structure of turquoise from Luonan, Shaanxi Province[J]. Acta Petrologica et Mineralogica, 2017, 36(1): 115-123.

[38]

于海燕, 阮青锋, 沙鑫, 等. 应用元素分析-电子顺磁共振能谱研究不同颜色青海软玉致色元素[J]. 岩矿测试, 2019, 38(3): 288-296.

Yu H Y, Ruan Q F, Sha X, et al. Study on color-causing elements in Qinghai nephrite by elemental analysis and electron paramagnetic resonance spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(3): 288-296.

[39]

周征宇, 陈琼, 姚春茂, 等. 三种绿色印章石的宝石矿物学特征[J]. 宝石和宝石学杂志, 2011, 13(3): 23-26.

Zhou Z Y, Chen Q, Yao C M, et al. Gemmological and mineralogical characteristics of three green seal stones[J]. Journal of Gems & Gemmology, 2011, 13(3): 23-26.

[40]

魏中枢, 狄敬如. 云南磷铝石谱学特征研究[J]. 岩石矿物学杂志, 2018, 37(1): 169-174.

Wei Z S, Di J R. Spectroscopic characteristics of natural variscite from Yunnan[J]. Acta Petrologica et Mineralogica, 2018, 37(1): 169-174.

[41]

周彦, 亓利剑, 戴慧, 等. 安徽马鞍山磷铝石宝石矿物学特征研究[J]. 岩矿测试, 2014, 33(5): 690-697.

Zhou Y, Qi L J, Dai H, et al. The gemological and mineral characteristics of variscite from Ma'anshan of Anhui Province[J]. Rock and Mineral Analysis, 2014, 33(5): 690-697.

[42]

刘玲.中国绿松石颜色的成因、影响因素及分级研究[D].北京: 中国地质大学(北京), 2018.

Liu L.Study on origin, factors and grading of the color of turquoise from China[D].Beijing: China University of Geosciences (Beijing), 2018.

[43]

王翠芝, 阙洪华. 紫金山金铜矿明矾石的矿物学特征[J]. 矿物学报, 2013, 33(3): 329-336.

Wang C Z, Que H H. Mineralogical characteristics of alunite from Zijinshan gold-copper deposit[J]. Acta Mineralogica Sinica, 2013, 33(3): 329-336.

[44]

王慧, 梁榕, 兰延, 等. 澳大利亚孟席斯祖母绿的光谱学特征[J]. 矿物学报, 2019, 39(6): 657-663.

Wang H, Liang R, Lan Y, et al. Study on the spectral characteristics of the Menzies emerald from Australia[J]. Acta Mineralogica Sinica, 2019, 39(6): 657-663.

[45]

Shen C, Lu R. The color origin of gem diaspore:Corre-lation to corundum[J].Gems & Gemology, 2018, 54(4): 394-403.

[46]

王庆楠, 狄敬如, 何翀, 等. 墨西哥Sonora(索诺拉州)锌绿松石的矿物学及谱学特征[J]. 光谱学与光谱分析, 2019, 39(7): 2059-2066.

Wang Q N, Di J R, He C, et al. Mineralogical and spectral characteristics of faustite from Sonora, Mexico[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2059-2066.

[47]

张勇, 魏然, 柯捷, 等. 黄色和红色石英质玉石的颜色成因研究[J]. 岩石矿物学杂志, 2016, 35(1): 139-146.

Zhang Y, Wei R, Ke J, et al. Coloration of yellow and red colored quartzite jade[J]. Acta Petrologica et Mineralogica, 2016, 35(1): 139-146.

[48]

Scheinost A C, Chavernas A, Barron V, et al. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils[J].Clays and Clay Minerals, 1998, 46(5): 528-536. doi: 10.1346/CCMN.1998.0460506

相似文献(共19条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

张勇, 周丹怡, 陈华, 陆太进, 柯捷. 应用同步辐射技术解析黄色-红色石英质玉石中的致色矿物. 岩矿测试, 2016, 35(5): 513-520. doi: 10.15898/j.cnki.11-2131/td.2016.05.010

[5]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[6]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[7]

周安丽, 武志远, 宁海龙, 王东, 杨丽, 吕新明. 高压密闭消解-电感耦合等离子体质谱法测定和田玉中15种稀土元素. 岩矿测试, 2020, 39(3): 451-458. doi: 10.15898/j.cnki.11-2131/td.201907170106

[8]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[9]

徐国栋, 葛建华, 杜谷, 王以尧, 金斌, 董俊. 成都市中心城区地表沉积物中重金属分布及矿物学特征. 岩矿测试, 2019, 38(4): 418-428. doi: 10.15898/j.cnki.11-2131/td.201811100120

[10]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[11]

韩楚文, 范文谦, 南普恒, 秦颍, 谢尧亭, 罗武干, 金爽. 横水西周墓地部分青铜器残留泥芯的矿物组成及成分分析. 岩矿测试, 2008, 27(4): 259-262.

[12]

姜琴, 何情, 郑刘根, 胡毅. 安徽齐云山晚白垩世恐龙蛋矿物和元素组成及古环境分析. 岩矿测试, 2017, 36(4): 340-349. doi: 10.15898/j.cnki.11-2131/td.201705230086

[13]

苏晓云, 刘善宝, 高虎, 王成辉, 刘战庆, 胡正华, 刘建光, 陈国华, 万浩章. 基于电感耦合等离子体质谱/光谱技术研究朱溪钨铜矿床原生晕地球化学特征. 岩矿测试, 2015, 34(2): 252-260. doi: 10.15898/j.cnki.11-2131/td.2015.02.017

[14]

刘曙, 沈劼, 周海明, 诸秀芬, 朱志秀, 李晨, 兰超. 电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征. 岩矿测试, 2015, 34(4): 436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010

[15]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[16]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[17]

严俊, 刘晓波, 王巨安, 方飚, 刘培钧, 杨彬彬. 应用FTIR-XRD-XRF分析测试技术研究新型仿制绿松石的矿物学特征. 岩矿测试, 2015, 34(5): 544-549. doi: 10.15898/j.cnki.11-2131/td.2015.05.008

[18]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[19]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

计量
  • PDF下载量(11)
  • 文章访问量(543)
  • HTML全文浏览量(165)
  • 被引次数(0)
目录

Figures And Tables

黄绿色明矾石玉的矿物学特征及颜色成因研究

宋彦军, 李甘雨, 张健, 陶隆凤, 刘云贵, 张璐