【引用本文】 刘喜锋, 贾玉衡, 刘琰, . 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072
LIU Xi-feng, JIA Yu-heng, LIU Yan. Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.201806180072

新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究

1. 

华南理工大学广州学院, 广东 广州 510800

2. 

桂林理工大学地球科学学院, 广西 桂林 541006

3. 

中国地质科学院地质研究所, 北京 100037

收稿日期: 2018-06-18  修回日期: 2019-03-04  接受日期: 2019-04-09

基金项目: 中国地质调查局“中国矿产地质志”二级项目(DD20160346,DD20190379);自然资源部中国地质调查局地质调查项目(DD20190060);广东省青年创新人才类项目(60-CQ180009);国家自然科学基金项目(41772044)

作者简介: 刘喜锋, 讲师, 主要从事宝石科研和教育工作。E-mail:liuxf@gcu.edu.cn

通信作者: 刘琰, 副研究员, 主要从事稀土和稀有金属矿床研究。E-mail:ly@cags.ac.cn

Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang

1. 

Guangzhou College of South China University of Technology, Guangzhou 510800, China

2. 

College of Earth Sciences, Guilin University of Technology, Guilin 541006, China

3. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: LIU Yan, ly@cags.ac.cn

Received Date: 2018-06-18
Revised Date: 2019-03-04
Accepted Date: 2019-04-09

摘要:新疆和田透闪石集合体(软玉)矿带长约1300km,是世界上最大的软玉矿带。除传统上认识的山料和籽料外,在新疆若羌—且末地区也分布着大量的戈壁料软玉。以往对戈壁料软玉的研究主要集中在肉眼鉴定以及与人工仿制品的区别,对其来源、年龄以及成因类型等研究尚未开展。本研究采用电子探针、电感耦合等离子体质谱、氢氧稳定同位素质谱以及SHRIMP U-Pb测年等技术对若羌戈壁料的化学成分、矿物组成及年龄进行研究,在此基础上明确其成因类型。测试结果表明,若羌戈壁料主要由纤维状透闪石和阳起石(>95%)组成,并含少量(< 5%)磷灰石、透辉石、绿帘石、铬铁矿等矿物。戈壁料颜色主要有深绿色、绿色、黄绿色、白色,除白色以外的颜色与其中的FeO含量(0.48%~2.92%)有关。样品全岩的化学成分与透闪石晶体化学组成类似,全岩稀土配分模式显示Eu负异常(δEu=0.09~0.66),LREE富集,HREE平坦,稀土总量(6.93~115.93μg/g)、Cr(68.8~119μg/g)、Ni(16.4~38.8μg/g)较低。戈壁料成矿流体中氢同位素δD为-24.94‰~-56.83‰,平均值为-40.14‰,显示其主要由岩浆水、大气降水组成。从戈壁料样品中分离出的锆石SHRIMP U-Pb年龄有四组(40~60Ma、480Ma、785Ma和1450~2460Ma),这些年龄可以约束戈壁料的形成时代。戈壁料软玉的地球化学和成矿流体组成与已报道的典型的镁质矽卡岩矿床中的软玉组成类似,其中400Ma左右的成矿年龄与报道的大部分和田区域的成矿年龄一致,多组成矿年龄也显示了软玉多期次成矿的特点。

关键词: 戈壁料, 镁质矽卡岩矿床, 成矿流体, 锆石SHRIMP U-Pb年龄

要点

(1) 戈壁料成矿流体中氢同位素主要由岩浆水、大气降水组成。

(2) 戈壁料稀土配分模式为Eu负异常,LREE富集,HREE平坦,稀土总量较低。

(3) 戈壁料中锆石400Ma的U-Pb年龄与和田区域的大部分成矿年龄一致。

(4) 戈壁料的地球化学特征和成矿流体组成显示了镁质矽卡岩矿床的特点。

Geochemical Characteristics and Genetic Types of Gobi Nephrite in Ruoqiang—Qiemo, Xinjiang

ABSTRACT

BACKGROUND:

The Hetian nephrite belt is the longest nephrite belt in the world at 1300km. In addition to the traditional primary and placer nephrite, there is widespread Gobi nephrite in the Gobi desert of the Quoqiang district in Xinjiang.

OBJECTIVES:

To identify the origin, genesis, ages and types of Gobi nephrite.

METHODS:

Electronic Microprobe, X-ray Fluorescence, Inductively Coupled Plasma-Mass Spectrometry and sensitive high-resolution Ion Microprobe were used to examine the mineral assemblages, chemical composition and ages of Gobi nephrite. Based on these analyses, the genesis of Gobi nephrite was constrained.

RESULTS:

Gobi nephrite was predominantly composed of tremolite (>95%) with minor apatite, diopside, epidote and chromite (< 5%). The color of Gobi nephrite was mainly dark green, green, yellow-green and white. The samples, with the exception of white, were related to the FeO content (0.48%-2.92%). The whole rock analysis suggested that both Gobi nephrite and tremolite had a similar chemical composition. All samples displayed LREE enrichment, flat HREE and negative Eu anomaly (δEu=0.09-0.66). Totally, all these samples had low content of REE (6.93-115.93μg/g), Cr (68.8-119μg/g), and Ni (16.4-38.8μg/g). δD (-24.94‰--56.83‰) of ore-forming fluids indicated that it was composed of magmatic water and meteoric water. SHRIMP U-Pb dating of zircons showed that there were four groups of ages:40-60Ma, 480Ma, 785Ma and 1450-2460Ma. These ages could be used to constrain the formation ages of Gobi nephrite.

CONCLUSIONS:

The geochemistry and ore-forming fluid composition of the Gobi nephrite is similar to the composition of nephrite in the typical Mg-skarn deposit previously reported. The ore-forming age of 400Ma is consistent with the mineralization age of most of the reported ages in the Hetian areas. The multiple age groups also indicate multi-stage mineralization of nephrite.

KEY WORDS: Gobi nephrite, Mg-skarn deposit, ore-forming fluids, zircon SHRIMP U-Pb dating

HIGHLIGHTS

(1) Hydrogen isotope of ore-forming fluids in Gobi nephrite samples was composed mainly of magmatic and meteoric water.

(2) Gobi nephrite displayed REE patterns with negative Eu anomalies, LREE enrichment, flat HREE and low REE concentration.

(3) 400Ma U-Pb age of zircons in Gobi nephrite was dominant in the Hetian region.

(4) Geochemical characteristics and ore-forming fluids of Gobi nephrite suggested an affinity with Mg-skarn deposits.

本文参考文献

[1]

Simandl G J, Riveros C P, Schiarizza P.Nephrite (Jade) Deposits, Mount Ogden Area, Central British Columbia (NTS 093N 13W)[R].British Columbia Geology Survey, 1999: 339-347.

[2]

Makepeace K, Simandl G J.Jade (Nephrite) in British Columbia, Canada[R].Program and Extended Abstracts for 37th Forum on the Geology of Indutrial Minerals, 2001: 209-210.

[3]

Łapot W. Peculiar nephrite from the East Saian Mts (Siberia)[J]. Mineralogia Polonica, 2004, 35: 49-58.

[4]

Yui T F, Kwon S T. Origin of a dolomite-related jade deposit at Chuncheon, Korea[J].Economic Geology, 2002, 97: 593-601. doi: 10.2113/gsecongeo.97.3.593

[5]

Harlow G E, Sorensen S S. Jade (nephrite and jadeitite) and serpentinite:Metasomatic connections[J].International Geology Review, 2005, 47: 113-146. doi: 10.2747/0020-6814.47.2.113

[6]

Liu Y, Deng J, Shi G H, et al. Chemical zone of nephrite in Almas, Xinjiang, China[J].Resource Geology, 2010, 60: 249-259. doi: 10.1111/rge.2010.60.issue-3

[7]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J].Journal of Asian Earth Sciences, 2011, 42: 440-451. doi: 10.1016/j.jseaes.2011.05.012

[8]

Liu Y, Deng J, Shi G H, et al. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang[J].Ore Geology Reviews, 2011, 41: 122-132. doi: 10.1016/j.oregeorev.2011.07.004

[9]

于海燕, 阮青锋, 孙媛, 等. 不同颜色青海软玉微观形貌和矿物组成特征[J]. 岩矿测试, 2018, 37(6): 626-636.

Yu H Y, Ruan Q F, Sun Y, et al. Micro-morphology and mineral composition of different color Qinghai nephrites[J]. Rock and Mineral Analysis, 2018, 37(6): 626-636.

[10]

Ling X X, Schmädicke E, Li Q L, et al. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite:A case study of the nephrite deposit from Luanchuan, Henan, China[J].Lithos, 2015, 220-223: 289-299. doi: 10.1016/j.lithos.2015.02.019

[11]

Middleton A.JADE-Geology and Mineralogy[M]//O'Donoghue M.Gems.Oxford: Elsevier, 2006: 332-354.

[12]

张蓓莉. 系统宝石学[M] . 北京: 地质出版社, 2006: 365-374.

Zhang B L. Systematic Gemmology[M] . Beijing: Geological Publishing House, 2006: 365-374.
[13]

买托乎提·阿不都瓦衣提.和田玉戈壁料与仿戈壁料鉴定方法探讨[C]//中国珠宝首饰学术交流会论文集.北京: 中国珠宝玉石首饰行业协会, 2009: 157-159.

Abuduwayiti M.Hetian Nephrite Occurring In the Gobi Desert and Their Imitation[C]//Proceedings of China Gems and Jewelry Academic Conference.Beijing: China Jewelry and Jade Jewelry Industry Association, 2009: 157-159.

[14]

Friedman I. Deuterium content of natural waters and other substances[J].Geochimica et Cosmochimica Acta, 1953, 4: 89-103. doi: 10.1016/0016-7037(53)90066-0

[15]

Black L P, Kamo S L, Allen C M, et al. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1): 155-170.

[16]

Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3): 247-265. doi: 10.1111/ggr.2008.32.issue-3

[17]

Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages forthe Early Cambrian time-scale[J].Journal of the Geological Society, 1992, 149: 171-184. doi: 10.1144/gsjgs.149.2.0171

[18]

Stern R A.High-resolution SIMS Determination of Ra-diogenic Tracer-Isotope Ratios in Minerals[C]//Cabri L J, Vaughan D J.Modern Approaches to Ore and Environmental Mineralogy.Mineralogical Association of Canada, 1998: 241-268.

[19]

Ludwig K R.Squid 1.02: A User's Manual[M].Berkeley Geochronology Center Special Publication, 2001: 1-21.

[20]

Ludwig K R.User's Manual for Isoplot 3.00: A Geo-chronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003.

[21]

Liu Y, Zhang R Q, Zhang Z Y, et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite:Implications for the genesis of a magnesian skarn deposit[J].Lithos, 2015, 212-215: 128-144. doi: 10.1016/j.lithos.2014.11.002

[22]

Liu Y, Zhang R Q, Abuduwayiti M, et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China:Implication for a magnesium skarn[J].Ore Geology Reviews, 2016, 72: 699-727. doi: 10.1016/j.oregeorev.2015.08.023

[23]

Douglas J G. The study of Chinese archaic jades using non-destructive X-ray fluorescence spectroscopy[J].Acta Geologica Taiwanica, 1996, 32: 43-54.

[24]

Douglas J G.Exploring Issues of Geological Source for Jade Worked by Ancient Chinese Cultures with the Aid of X-ray Fluorescence[C]//Jett P.Scientific Study in the Field of Asian Art.London: Archetype Publications Ltd, 2003: 192-199.

[25]

刘喜锋, 刘琰, 李自静, 等. 新疆皮山镁质矽卡岩矿床(含糖玉)成因及锆石SHRIMP U-Pb定年[J]. 岩石矿物学杂志, 2017, 36(2): 259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

Liu X F, Liu Y, Li Z J, et al. The genesis of Mg-skarn deposit (bearing brown nephrite) and its Ar-Ar dating of phlogopite and SHRIMP U-Pb dating of zircon, Pishan, Xinjiang[J].Acta Petrologica et Mineralogica, 2017, 36(2): 259-273. doi: 10.3969/j.issn.1000-6524.2017.02.010

[26]

Ohmoto H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1): 491-559.

[27]

张勇, 魏华, 陆太进, 等. 新疆奥米夏和田玉矿床成因及锆石LA-ICP-MS定年研究[J]. 岩矿测试, 2018, 37(6): 695-704.

Zhang Y, Wei H, Lu T J, et al. The genesis and LA-ICP-MS zircon ages of Omixia nephrite deposit, Xinjiang, China[J]. Rock and Mineral Analysis, 2018, 37(6): 695-704.

[28]

Siqin B, Qian R, Zhuo S, et al. Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments[J].International Journal of Mass Spectrometry, 2012, 309: 206-211. doi: 10.1016/j.ijms.2011.10.003

[29]

Grapes R H, Yun S T. Geochemistry of a New Zealand nephrite weathering rind[J].New Zealand Journal of Geology and Geophysics, 2010, 53: 413-426. doi: 10.1080/00288306.2010.514929

[30]

Kostov R I, Protochristov C, Stoyanov C, et al. Micro-PIXE geochemical fingerprinting of nephrite neolithic artifacts from Southwest Bulgaria[J].Geoarchaeology, 2012, 27: 457-469. doi: 10.1002/gea.21417

[31]

Adamo I, Bocchio R. Nephrite jade from Val Malenco, Italy:Review and update[J]. Gems and Gemology, 2013, 49: 98-106.

[32]

Bhattacharya A, Raith M, Hoernes S, et al. Geochemical evolution of the massif-type anorthosite complex at Bolangir in the Eastern Ghats belt of India[J].Journal of Petrology, 1998, 39(6): 1169-1195. doi: 10.1093/petroj/39.6.1169

[33]

James O B, Floss C, McGee J J, et al. Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in Lunar ferroan anorthosites[J].Geochimica et Cosmochimica Acta, 2002, 66(7): 1269-1284. doi: 10.1016/S0016-7037(01)00772-4

[34]

Charlier B, Auwera J V, Duchesne J C, et al. Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S.Norway):Part Ⅱ.REE and the trapped liquid fraction[J]. Lithos, 2005, 83(3): 255-276.

[35]

刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489.

Liu X F, Zhang H Q, Liu Y, et al. Mineralogical characteristics and genesis of green nephrite from the world[J]. Rock and Mineral Analysis, 2018, 37(5): 479-489.

相似文献(共18条)

[1]

侯可军, 陈振宇, 王登红, 陈郑辉, 赵正. 赣南兴国杨村岩体锆石U-Pb年龄测定及其地质意义. 岩矿测试, 2012, 31(3): 549-553.

[2]

孙艳, 高允, 王登红, 代鸿章, 顾文帅, 李建, 张丽红. 重庆铜梁地区“绿豆岩”中碎屑锆石U-Pb年龄及其地质意义. 岩矿测试, 2017, 36(6): 649-658. doi: 10.15898/j.cnki.11-2131/td.201702220022

[3]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

[4]

赵正, 陈毓川, 陈郑辉, 王登红, 曾载淋, 赵斌, 张家菁. 赣南银坑矿田高山角花岗闪长岩SHRIMP U-Pb定年及其与成矿的关系. 岩矿测试, 2012, 31(3): 536-542.

[5]

王立强, 谢富伟, 王勇. 西藏巴嘎拉东铅锌矿床黑云母花岗岩锆石U-Pb年龄、微量元素组成及地质意义. 岩矿测试, 2016, 35(6): 650-657. doi: 10.15898/j.cnki.11-2131/td.2016.06.013

[6]

陈芳, 杜建国, 万秋, 邱军强, 汤金来. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄. 岩矿测试, 2016, 35(3): 329-338. doi: 10.15898/j.cnki.11-2131/td.2016.03.017

[7]

曾乐, 陈郑辉, 孙丰月, 王家欢, 孙颖超, 陈振宇. 赣南珠兰埠岩体锆石U-Pb年代学研究及其含矿性评价. 岩矿测试, 2016, 35(2): 199-207. doi: 10.15898/j.cnki.11-2131/td.2016.02.013

[8]

田泽瑾, 陈振宇, 王登红, 陈郑辉, 黄凡, 赵正, 侯可军. 赣南桃山复式岩体的锆石U-Pb年代学及其产铀性探讨. 岩矿测试, 2014, 33(1): 133-141.

[9]

王永磊, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南—湘东湖南洞岩体的锆石U-Pb年代学研究及其对加里东构造背景的意义. 岩矿测试, 2012, 31(3): 525-529.

[10]

黄凡, 侯可军, 陈郑辉, 陈振宇, 赵正. 赣东南大富足成铀岩体锆石U-Pb定年和构造背景与含矿性. 岩矿测试, 2012, 31(3): 518-524.

[11]

应立娟, 唐菊兴, 王登红, 畅哲生, 屈文俊, 郑文宝. 西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义. 岩矿测试, 2009, 28(3): 265-268.

[12]

王勇, 唐菊兴, 王立强. 西藏邦铺斑岩钼(铜)矿床钾硅酸盐化热液黑云母电子探针分析及早期成矿流体特征. 岩矿测试, 2016, 35(4): 440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

[13]

谢奋全, 王黎栋, 李琦, 石朝霞, 陈学兵, 韦岸. 阿拉善宗乃山岩体东南缘花岗岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩矿测试, 2015, 34(3): 375-382. doi: 10.15898/j.cnki.11-2131/td.2015.03.019

[14]

陈芳, 王登红, 杜建国, 许卫, 胡海风, 余有林, 汤金来. 安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义. 岩矿测试, 2013, 32(6): 970-977.

[15]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 463-474. doi: 10.15898/j.cnki.11-2131/td.201901160007

[16]

方贵聪, 陈毓川, 陈郑辉, 陈振宇, 赵正, 黄凡. 赣南白鹅花岗岩中锆石特征和年龄及其对多期次成矿的指示意义. 岩矿测试, 2012, 31(3): 559-566.

[17]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[18]

郑奋, 刘琰, 张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究. 岩矿测试, 2019, 38(4): 453-462. doi: 10.15898/j.cnki.11-2131/td.201807310089

计量
  • PDF下载量(35)
  • 文章访问量(132)
  • HTML全文浏览量(38)
  • 被引次数(0)
目录

Figures And Tables

新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究

刘喜锋, 贾玉衡, 刘琰