【引用本文】 刘彤彤, 钱银弟, 黄登丽, . 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058
LIU Tong-tong, QIANG Yin-di, HUANG Deng-li. Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. doi: 10.15898/j.cnki.11-2131/td.202105060058

磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银

1. 

甘肃省有色金属地质勘查局张掖矿产勘查院, 甘肃 张掖 734000

2. 

甘肃省有色金属地质勘查局兰州矿产勘查院, 甘肃 兰州 730030

收稿日期: 2021-05-06  修回日期: 2021-06-29  接受日期: 2021-08-28

基金项目: 甘肃省地质勘查基金项目(202004-Y01)

作者简介: 刘彤彤, 地质实验工程师, 主要从事地质样品、土壤样品的光谱方法分析。E-mail: gstvliutt@163.com

Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation

1. 

Zhangye Geo-Mine Survey Institute, Non-Ferrous Metal Geological Exploration Bureau of Gansu Province, Zhangye 734000, China

2. 

Lanzhou Geo-Mine Survey Institute, Non-Ferrous Metal Geological Exploration Bureau of Gansu Province, Lanzhou 730030, China

Received Date: 2021-05-06
Revised Date: 2021-06-29
Accepted Date: 2021-08-28

摘要:应用电感耦合等离子体质谱法(ICP-MS)分析化探样品中的痕量银,通常在标准模式下用干扰校正法或动能歧视模式进行测定。银的两个稳定同位素均受锆和铌的氧化物或氢氧化物的质谱干扰,对于干扰元素锆、铌含量较高而银含量低的样品,测定误差较大,需要将干扰元素与银分离。本方法采用硝酸、氢氟酸、高氯酸消解样品,浓盐酸复溶提取,加入磷酸使大部分溶出的干扰元素锆、铌转化为难溶的磷酸盐化合物,通过沉淀与待测元素银分离。ICP-MS测定时以103Rh为内标,用90Zr16O+同质量数的同位素106Pd间接校正91Zr16O+90Zr16O1H+107Ag的质谱干扰。经国家一级标准物质验证,分析结果在标准值的允许误差范围内,相对标准偏(n=12)为4.3%~12.1%,方法检出限(3SD)为0.0072μg/g。本方法适合土壤、水系沉积物及岩石等化探样品中痕量银的分析。样品处理中引入的磷酸不影响其他常规元素,可用同一份消解液进行测定。

关键词: 痕量银, 电感耦合等离子体质谱法, 化探样品, 磷酸盐沉淀

要点

(1) 通过磷酸沉淀法将大部分干扰元素铌、锆与待测元素银分离,可消除ICP-MS的质谱干扰。

(2) 采用106Pd间接校正91Zr16O+90Zr16O1H+107Ag的质谱干扰。

(3) 建立了四酸消解,磷酸沉淀法处理样品,ICP-MS测定地质样品中痕量银的分析方法。

Determination of Trace Silver in Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Phosphoric Acid Precipitation Separation

ABSTRACT

BACKGROUND:

Standard mode with interference correction or kinetic energy discrimination mode is commonly used for the determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS). Interference of both stable isotopes of silver occurs in the mass spectrum of the oxides or hydroxides of zirconium and niobium. Moreover, for samples with a higher content of interfering elements and a lower content of silver, the determination accuracy is low, requiring separation of the interfering element from silver in the solution.

OBJECTIVES:

To develop a method for the determination of trace Ag in geochemical samples.

METHODS:

Common sample digestion methods and chemical separation (ion exchange separation) were introduced in detail and were discussed in this paper.

RESULTS:

As proved by first grade standard materials, the result was consistent with standard recommended values, with the relative standard deviation of 4.3%-12.1% (n=12). The detection limit (3SD) of the method was 0.0072μg/g.

CONCLUSIONS:

This method is suitable for the determination of trace silver in soil, stream sediment and rock samples. The introduction of phosphoric acid does not affect the determination of other conventional elements, and the same digestion solution can be used to determine Ag and other elements.

KEY WORDS: trace silver, inductively coupled plasma-mass spectrometry, geochemical samples, phosphate precipitation

HIGHLIGHTS

(1) The phosphate precipitation method separated most of the interfering elements of niobium and zirconium from the analyzed element silver, which eliminated the mass spectrum interference in the determination of silver by ICP-MS.

(2) 106Pd was used to correct the interference of 91Zr16O+ and 90Zr16O1H+ on 107Ag.

(3) A method for the determination of trace silver in geochemical samples by ICP-MS was developed with four acid dissolution andphosphate precipitation.

本文参考文献

[1]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011: 639-647.

The editorial committee of 《Rock and mineral analysis》 . Rock and mineral analysis (The fourth edition: Vol.Ⅲ)[M] . Beijing: Geological Pubilishing House, 2011: 639-647.
[2]

杨凤云, 高会艳, 徐霞, 等. 火焰原子吸收分光光度法测定铅精矿中高含量银[J]. 化学分析计量, 2019, 28(6): 91-94.

Yang F Y, Gao H Y, Xu X, et al. Determination of high silver content in lead concentrate by flame atomic absorption spectrophotometry[J]. Chemical Analysis and Meterage, 2019, 28(6): 91-94.

[3]

史洁, 宋志敏, 白露, 等. 石墨炉原子吸收光谱法测定土壤中的银[J]. 化学分析计量, 2019, 28(3): 81-83. doi: 10.3969/j.issn.1008-6145.2019.03.020

Shi J, Song Z M, Bai L, et al. Determination of silver in soil by graphite furnace atomic absorption spectrometry[J].Chemical Analysis and Meterage, 2019, 28(3): 81-83. doi: 10.3969/j.issn.1008-6145.2019.03.020

[4]

张亮亮, 雷亚宁. 石墨炉原子吸收光谱法直接测定铁镍基高温合金中的银、砷、铋、铅、硒、碲[J]. 化学试剂, 2018, 40(4): 348-352.

Zhang L L, Lei Y N. Direct determination of silver, arsenic, bismuth, lead, selenium and tellurium in iron-nickel-base superalloy by graphite furnace atomic absorption spectrometry method[J]. Chemical Reagents, 2018, 40(4): 348-352.

[5]

李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16-21.

Li X H, Sun H Y, Yu Y Y, et al. Determination of sliver, tin, boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16-21.

[6]

肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32.

Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32.

[7]

朱若华, 王娟, 施燕支, 等. 电感耦合等离子体质谱法测定植物中痕量钯的光谱干扰消除方法的研究[J]. 光谱学与光谱分析, 2007, 27(4): 792-795. doi: 10.3321/j.issn:1000-0593.2007.04.042

Zhu R H, Wang J, Shi Y Z, et al. Elimination of spectral interference in the determination of trace palladium in plants by inductively coupled plasma-mass spectrometry[J].Spectroscopy and Spectral Analysis, 2007, 27(4): 792-795. doi: 10.3321/j.issn:1000-0593.2007.04.042

[8]

Serap K A, Hikmet D, Nilgün P, et al. Analyses of mineral content and heavy metal of honey samples from south and east region of Turkey by using ICP-MS[J]. International Journal of Analytical Chemistry, 2017, 8: 1-6.

[9]

Reimann C, Caritat P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J].Science of The Total Environment, 2017, 578: 633-648. doi: 10.1016/j.scitotenv.2016.11.010

[10]

Michael O, Matt Z, Carol C, et al. Multi-element analysis and geochemical spatial trends of groundwater in rural northern New York[J].Water, 2010, 2(2): 217. doi: 10.3390/w2020217

[11]

黄慧敏, 胡芳, 侯玉兰, 等. 电感耦合等离子体质谱(ICP-MS)法测定废水中有害元素银的含量[J]. 中国无机分析化学, 2020, 10(6): 14-17. doi: 10.3969/j.issn.2095-1035.2020.06.004

Hang H M, Hu F, Hou Y L, et al. Determination of harmful element silver in waste water by inductively coupled plasma mass spectrometry (ICP-MS)[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(6): 14-17. doi: 10.3969/j.issn.2095-1035.2020.06.004

[12]

张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子体质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415-422.

Zhang J W, Meng J L, Zhao Z Q, et al. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415-422.

[13]

陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409.

Chen W, Fan X W, Guo C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409.

[14]

Zhao S K, Guo K, Zong T, et al. Geochemical features of trace and rare earth elements of pumice in middle Okinawa trough and its indication of magmatic process[J].Journal of Ocean University of China, 2017, 16(2): 233-242. doi: 10.1007/s11802-017-3131-0

[15]

张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192.

Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192.

[16]

边朋沙, 李晓敬, 申玉民, 等. 电感耦合等离子体质谱法测定地质样品中痕量碲[J]. 冶金分析, 2018, 38(6): 25-30.

Bian P S, Li X J, Shen Y M, et al. Determination of trace tellurium in geological sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 25-30.

[17]

徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249.

Xu J L, Xing X, Liu B, et al. Determination of trace element molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249.

[18]

Chao C C, Hui T L, Shuuh J J, et al. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J].Analytica Chimica Acta, 2003, 493(2): 213-218. doi: 10.1016/S0003-2670(03)00875-4

[19]

迟清华,鄢明才. 应用地球化学元素丰度数据手册[M] . 北京: 地质出版社, 2007: 140-142.

Chi Q H,Yan M C. Handbook of elemental abundance for applied geochemistry[M] . Beijing: Geological Publishing House, 2007: 140-142.
[20]

周丽萍, 李中玺. 王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银, 镉, 铋[J]. 分析试验室, 2005, 24(9): 20-25. doi: 10.3969/j.issn.1000-0720.2005.09.006

Zhou L P, Li Z Y. Determination of silver, cadmium and bismuth in geological samples by inductively coupled plasma mass spectrometry with aqua regia treatment[J].Chinese Journal of Analysis Laboratory, 2005, 24(9): 20-25. doi: 10.3969/j.issn.1000-0720.2005.09.006

[21]

杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64.

Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64.

[22]

邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398-401. doi: 10.3969/j.issn.0254-5357.2013.03.007

Xing Z, Qi L. Separation with P507 levextrel resin for rapid determination of Ag in geochemical exploration samples by ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(3): 398-401. doi: 10.3969/j.issn.0254-5357.2013.03.007

[23]

邢智, 漆亮. P507负载泡塑分离-电感耦合等离子体质谱法同时测定化探样品中银钨钼[J]. 岩矿测试, 2014, 33(4): 486-490. doi: 10.3969/j.issn.0254-5357.2014.04.005

Xing Z, Qi L. Simultaneous determination of Ag, W and Mo in geochemical exploration samples by ICP-MS using P507 loaded foam for separation[J]. Rock and Mineral Analysis, 2014, 33(4): 486-490. doi: 10.3969/j.issn.0254-5357.2014.04.005

[24]

孙朝阳, 戴雪峰, 代小吕, 等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试, 2015, 34(3): 292-296.

Sun C Y, Dai X F, Dai X L, et al. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292-296.

[25]

刘海明, 武明丽, 成景特, 等. 酸溶分离-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450.

Liu H M, Wu M L, Cheng J T, et al. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450.

[26]

徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

Xu J L, Xing X, Tang R L., et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

[27]

刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-212.

Liu J B, Zhang G Y. Determination of Be, Ba, Ti and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-212.

[28]

Scott D T, Vladimir I B, Dmirty R B, et al. Reaction cells and collision cells for ICP-MS: A tutorial review[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57: 1361-1452. doi: 10.1016/S0584-8547(02)00069-1

[29]

王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822.

Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822.

[30]

李冰,杨红霞. 电感耦合等离子体质谱原理和应用[M] . 北京: 地质出版社, 2005: 85-106.

Li B,Yang H X. Principle and application of inductively coupled plasma mass spectrometry[M] . Beijing: Geological Publishing House, 2005: 85-106.
[31]

《无机化学丛书》编委会. 无机化学丛书第八卷钛分族, 钒分族, 铬分族[M] . 北京: 科学出版社, 1995: 134-135.

The editorial committee of 《Inorganic chemistry series》 . Inorganic chemistry series (Vol.8). Titanium, vanadium and chromium[M] . Beijing: Science Press, 1995: 134-135.
[32]

李艳平, 李沪萍, 孙彦琳, 等. NZP族磷酸盐晶体化合物NH4Zr2(PO4)3的水热合成[J]. 硅酸盐学报, 2009, 37(10): 1639-1644. doi: 10.3321/j.issn:0454-5648.2009.10.009

Li Y P, Li H P, Sun Y L, et al. Hydrothermal synthesis of NH4Zr2(PO4)3 belonging to NZP family[J].Journal of the Chinese Ceramic Society, 2009, 37(10): 1639-1644. doi: 10.3321/j.issn:0454-5648.2009.10.009

[33]

吴希桃. 氧化钪制备过程中磷酸和磷酸钠组合除锆工艺研究[J]. 矿冶工程, 2018, 38(3): 115-117, 122. doi: 10.3969/j.issn.0253-6099.2018.03.028

Wu X T. Zirconium removal by a combination of phosphoric acid and sodium phosphate in the preparation of scandium oxide[J].Mining and Metallurgical Engineering, 2018, 38(3): 115-117, 122. doi: 10.3969/j.issn.0253-6099.2018.03.028

相似文献(共20条)

[1]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[2]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[5]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[6]

刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银. 岩矿测试, 2021, 40(3): 444-450. doi: 10.15898/j.cnki.11-2131/td.202002190018

[7]

孙朝阳, 戴雪峰, 代小吕, 陈斌, 郑存江. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银. 岩矿测试, 2015, 34(3): 292-296. doi: 10.15898/j.cnki.11-2131/td.2015.03.005

[8]

邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银. 岩矿测试, 2013, 32(3): 398-401.

[9]

夏辉, 张永花, 李景文, 杨惠玲, 梁倩, 韩华云. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进. 岩矿测试, 2013, 32(1): 48-52.

[10]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[11]

邢智, 漆亮. P507负载泡塑分离-电感耦合等离子体质谱法同时测定化探样品中银钨钼. 岩矿测试, 2014, 33(4): 486-490.

[12]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[13]

徐国栋, 金斌, 葛建华, 董俊, 程江. 草酸铵为基体改进剂石墨炉原子吸收光谱法测定碳酸盐岩中的痕量银. 岩矿测试, 2016, 35(2): 134-137. doi: 10.15898/j.cnki.11-2131/td.2016.02.004

[14]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[15]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[16]

禹莲玲, 郭斌, 柳昭, 赵昕, 戴长文, 彭君. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉. 岩矿测试, 2020, 39(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201906270094

[17]

龚伟. 原子吸收法测定化探样品中的银,镉,锂,钴和镍. 岩矿测试, 1989, (4): 317-319.

[18]

邵坤, 赵朝辉, 刘卫. 沉淀基体分离-电感耦合等离子体质谱法测定高纯硝酸银中痕量杂质元素. 岩矿测试, 2014, 33(1): 29-33.

[19]

孙文军. 二苯硫脲泡塑富集-原子吸收光谱法连续测定化探样品中金和银. 岩矿测试, 2012, 31(5): 829-833.

[20]

于阗, 张连起, 陈小迪. 电感耦合等离子体发射光谱法和火焰原子吸收光谱法连续测定化探样品中12个元素. 岩矿测试, 2011, 30(1): 71-74.

计量
  • PDF下载量(30)
  • 文章访问量(2807)
  • HTML全文浏览量(774)
  • 被引次数(0)
目录

Figures And Tables

磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银

刘彤彤, 钱银弟, 黄登丽