【引用本文】 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
LI Jin, TANG Suo-han, MA Jian-xiong, et al. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

金属同位素质谱中分析样品处理的基本原则与方法

中国地质科学院地质研究所, 自然资源部同位素地质重点实验室, 自然资源部深地动力学重点实验室, 北京 100037

收稿日期: 2020-12-13  修回日期: 2021-06-29  接受日期: 2021-08-20

基金项目: 国家自然科学基金面上项目(41973020,41473005);国家重点研发计划项目(2019YFA0708400)

作者简介: 李津, 博士, 副研究员, 主要从事金属同位素研究。E-mail: lijin80119@hotmail.com

通信作者: 唐索寒, 研究员, 主要从事地球化学研究。E-mail: tangsuohan@163.com

Principles and Treatment Methods for Metal Isotopes Analysis

Institute of Geology, Chinese Academy of Geological Sciences; Key Laboratory of Isotope Geology, Ministry of Natural Resources; Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Beijing 100037, China

Corresponding author: TANG Suo-han, tangsuohan@163.com

Received Date: 2020-12-13
Revised Date: 2021-06-29
Accepted Date: 2021-08-20

摘要:二十年来,国内外相继建立了多种金属(铁铜锌镁钙锂钼硒汞铬镉矾钡钛等)同位素的分析方法。金属同位素分析中的样品处理包括两个过程:样品的消解和样品中待测元素的分离纯化。为了获得真实、准确的金属同位素数据,样品处理过程必须遵守两个基本原则:①不引入待测元素以及可能会对待测元素同位素分析产生干扰的元素;②待测元素不发生损失。金属同位素分析常用的样品消解方法是酸溶法(包括高压闷罐法和微波消解法)。待测元素的分离纯化主要使用离子交换分离法。相同的树脂可以用于不同元素的化学分离,同一种元素也可以使用不同的树脂进行化学分离。不同类型样品的基质差异较大,需要不同的流程对待测元素进行分离。研究人员可以通过改变前人的分离流程,包括改变树脂的用量、变换淋洗液或用量、增加分离步骤等方法来满足不同样品的分离要求。本文提出了金属同位素样品处理中需要注意的一些细节:①如果消解样品时使用了高氯酸,必须将高氯酸在高温下彻底去除,因为残余的高氯酸具有强氧化性会使后续化学分离中使用的离子交换树脂失效,影响分离效果;②同一体积的树脂放入不同内径的交换柱中,树脂柱越细越长,淋洗液流速越慢、洗脱时间越长,并且待测元素洗脱出来越滞后;③离子交换过程中,每次加入的试剂体积越小,淋洗出来的元素越集中,分离效果越好。

关键词: 金属同位素, 样品处理, 消解, 离子交换分离

要点

(1) 样品处理过程须遵守两个基本原则:不引入待测元素以及可能会对待测元素同位素分析产生干扰的元素;待测元素不发生损失。

(2) 金属同位素分析常用的样品消解方法是酸溶法,包括高压闷罐法和微波消解法。

(3) 离子交换分离前必须彻底去除消解时加入的高氯酸。

(4) 相同体积的树脂放入越细越长的树脂柱中,待测元素洗脱出来越滞后。

Principles and Treatment Methods for Metal Isotopes Analysis

ABSTRACT

BACKGROUND:

In the past twenty years, methods for metal isotopes analysis (iron, copper, zinc, magnesium, calcium, lithium, molybdenum, selenium, mercury, chromium, cadmium, alum, barium, titanium, etc.) have been established. The sample pretreatment during metal isotope analysis includes two processes: the digestion of the sample; and the separation and purification of the analyzed elements. In order to ensure the accuracy and precision of metal isotopes data, two general principles of sample treatment must be followed. Elements that may interfere with the isotope analysis of the analyzed elements should not be introduced into the analysis. The analyzed elements should not be lost during the experiment.

OBJECTIVES:

In order to understand the pretreatment methods for metal isotope analysis.

METHODS:

Common sample digestion methods and chemical separation (ion exchange separation) were introduced in detail and were discussed in this paper.

RESULTS:

The common sample digestion method for metal isotope analysis is the acid dissolution method (Teflon bombs and microwave digestion). The separation and purification of the element to be measured mainly uses the ion exchange separation method. The same resin can be used for the chemical separation of different elements, and the same element can also be chemically separated by using different resins. The matrices of different types of samples are quite different, and different processes are required to separate the analyzed elements. The separation requirements of different samples can be met by changing the separation process of the predecessors, including changing the resin or the amount, changing the eluent or the amount, and increasing the separation steps.

CONCLUSIONS:

Based on the authors' experience, details should be paid attention to during treatments for metal isotope analysis: (1) HClO4 must be thoroughly removed at high temperature during sample digestion, because its strong oxidization can destroy the effectiveness of resins; (2) when the same volume of resin is put into the column, the thinner the column is, the slower the flow rate of the eluent, and the later elution of the elements to be measured; (3) the smaller the volume of the eluent added each time, the better the separation effect during ion exchange purification.

KEY WORDS: metal isotopes, sample treatment, digestion, ion exchange separation

HIGHLIGHTS

(1) In order to obtain accurate and precise metal isotopes data, two principles must be followed.No analyzed and interfering elements to be introduced; and no loss of analyzed elements.

(2) Acid dissolution method (including Teflon bombs and microwave digestion) is a common technique for metal isotope analysis.

(3) HClO4 must be removed thoroughly at high temperature during sample digestion, because its strong oxidization will destroy the effectiveness of resins.

(4) When the same volume of resin is put into the column, the thinner the column is, the slower the flow rate of the eluent.

本文参考文献

[1]

Teng F Z, Dauphas N, Watkins J M, et al. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy & Geochemistry, 2017, 82: 1-26.

[2]

Zhang S, Wang X, Wang H, et al. Sufficient oxygen for animal respiration 1400 million years ago[J].Proceedings of the National Academy of Sciences, 2016, 113: 1731-1736. doi: 10.1073/pnas.1523449113

[3]

Ye Y, Zhang S, Wang H, et al. Black shale Mo isotope record reveals dynamic ocean redox during the Mesoproterozoic Era[J].Geochemical Perspectives Letters, 2021, 18: 16-21. doi: 10.7185/geochemlet.2118

[4]

Luo J, Long X, Bowyer F T, et al. Pulsed oxygenation events drove progressive oxygenation of the Early Mesoproterozoic Ocean[J].Earth and Planetary Science Letters, 2021, 559: 116754. doi: 10.1016/j.epsl.2021.116754

[5]

Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J].Geochimica Et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036

[6]

Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J].Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005

[7]

Mänd K, Planavsky N J, Porte S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic[J].Science Advances, 2021, . doi: 10.31223/X5NP6G

[8]

Wei W, Klaebe R, Ling H F, et al. Biogeochemical cycle of chromium isotopes at the modern Earth's surface and its applications as a paleo-environment proxy[J].Chemical Geology, 2020, 541: 119570. doi: 10.1016/j.chemgeo.2020.119570

[9]

Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at~1.4Ga[J].Precambrian Research, 2021, 354: 106058. doi: 10.1016/j.precamres.2020.106058

[10]

《岩石矿物分析》编委会. 岩石矿物分析[M] (第四版) . 北京: 地质出版社, 2011

The Editorial Committee of 《Rock and mineral analysis》 . Rock and mineral analysis[M] (The Fourth Edition) . Beijing: Geological Publishing House, 2011
[11]

黄敏文,苑星海,林穗云. 化学分析的样品处理[M] . 北京: 化学工业出版社, 2007

Huang M W,Yuan X H,Lin S Y. Sample processing for chemical analysis[M] . Beijing: Chemical Industry Press, 2007
[12]

余自立,程光磊. 金属离子分析技术[M] . 北京: 化学工业出版社, 2004

Yu Z L,Cheng G L. Analysis technology of metal ion[M] . Beijing: Chemical Industry Press, 2004
[13]

Malinovsky D, Rodushkin I, Baxter D C, et al. Molybdenum isotope ratio measurements on geological samples by MC-ICPMS[J].International Journal of Mass Spectrometry, 2005, 245: 94-107. doi: 10.1016/j.ijms.2005.07.007

[14]

闫斌, 朱祥坤, 陈岳龙, 等. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400-405. doi: 10.3969/j.issn.0254-5357.2011.04.004

Yan B, Zhu X K, Chen Y L, et al. Effects of sample size on Cu and Zn isotope ratio measurements[J]. Rock and Mineral Analysis, 2011, 30(4): 400-405. doi: 10.3969/j.issn.0254-5357.2011.04.004

[15]

张宗清, 叶笑江. 稀土元素的质谱同位素稀释分析和143Nd/144Nd比值的精确测定方法[J]. 中国地质科学院地质研究所所刊, 1987, 17: 108-128.

Zhang Z Q, Ye X J. Mass-spectrometric isotope dilution analysis of REE and precise measurement of 143Nd/144Nd ratios[J]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 1987, 17: 108-128.

[16]

Goldberg T, Gordon G, Izon G, et al. Resolution of inter-laboratory discrepancies in Mo isotope data: An intercalibration[J].Journal of Analytical Atomic Spectrometry, 2013, 28: 724-735. doi: 10.1039/c3ja30375f

[17]

李世珍, 朱祥坤, 吴龙华, 等. 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报, 2011, 32(6): 754-760. doi: 10.3975/cagsb.2011.06.14

Li S Z, Zhu X K, Wu L H, et al. A comparative study of plant sample preparation by dry ashing and wet digestion for isotopic determination of Cu, Zn and Fe[J].Acta Geoscientica Sinica, 2011, 32(6): 754-760. doi: 10.3975/cagsb.2011.06.14

[18]

Andersen M, Vance D, Archer C, et al. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J].Earth and Planetary Science Letters, 2011, 301: 137-145. doi: 10.1016/j.epsl.2010.10.032

[19]

Abouchami W, Galer S J G, de Baar H J W, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J].Earth and Planetary Science Letters, 2011, 305: 83-91. doi: 10.1016/j.epsl.2011.02.044

[20]

Foster G L, Pogge von Strandmann P A E, Rae J W B, et al. Boron and magnesium isotopic composition of seawater[J].Geochemistry, Geophysics, Geosystems, 2010, 11: 8.

[21]

Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J].Rapid Communications in Mass Spectrometry, 2011, 25: 2828-2836. doi: 10.1002/rcm.5172

[22]

Schmitt A D, Bracke G, Stille P, et al. The calcium isotope composition of modern seawater determined by thermal ionization mass spectrometry[J].Geostandards Newsletter, 2001, 25: 267-275. doi: 10.1111/j.1751-908X.2001.tb00602.x

[23]

Bonnand P, Parkinson I J, James R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26: 528-535. doi: 10.1039/c0ja00167h

[24]

Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J].Earth and Planetary Science Letters, 2008, 274: 204-213. doi: 10.1016/j.epsl.2008.07.026

[25]

唐索寒, 王进辉, 朱祥坤, 等. 肉类制品中微量锶的分离及87Sr/86Sr同位素比值测定[J]. 分析化学, 2008, 36(1): 52-56. doi: 10.3321/j.issn:0253-3820.2008.01.010

Tang S H, Wang J H, Zhu X K, et al. Separation and isotopic measurement of Sr in meat products[J].Chinese Journal of Analytical Chemistry, 2008, 36(1): 52-56. doi: 10.3321/j.issn:0253-3820.2008.01.010

[26]

燕娜, 赵小龙, 赵生国, 等. 红土镍矿样品前处理方法和分析测定技术研究进展[J]. 岩矿测试, 2015, 34(1): 1-11.

Yan N, Zhao X S, Zhao S G, et al. Research progress on sample preparation methods and analytical techniques for nickel laterite[J]. Rock and Mineral Analysis, 2015, 34(1): 1-11.

[27]

Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry[J].Geochimica Et Cosmochimica Acta, 2002, 66: 3191-3199. doi: 10.1016/S0016-7037(02)00918-3

[28]

Foucher D, Hintelmann H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J].Analytical and Bioanalytical Chemistry, 2006, 384: 1470-1478. doi: 10.1007/s00216-006-0373-x

[29]

Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2020, 35: 713-727. doi: 10.1039/C9JA00397E

[30]

Millet M A, Dauphas N. Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1444-1458. doi: 10.1039/C4JA00096J

[31]

Schoenberg R, Merdian A, Holmden C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J].Geochimica Et Cosmochimica Acta, 2016, 183: 14-30. doi: 10.1016/j.gca.2016.03.013

[32]

《化学分离富集方法及应用》编委会. 化学分离富集方法及应用[M] . 长沙: 中南工业大学出版社, 2001

[33]

石影,訾言勤. 定量化学分离方法[M] . 北京: 中国矿业大学出版社, 2001

Shi Y,Zi Y Q. Quantitative chemical separation method[M] . Beijing: China University of Mining and Technology Press, 2001
[34]

Korkish J. Handbook of ion exchange resins: Their appli-cation to inorganic analytical chemistry[M]. 1989.

[35]

唐索寒, 朱祥坤, 蔡俊军, 等. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J]. 岩矿测试, 2006, 25(1): 5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002

Tang S H, Zhu X K, Cai J J, et al. Chromatographic separation of Cu, Fe and Zn using AGMP-1 anion exchange resin for isotope determination by MC-ICPMS[J]. Rock and Mineral Analysis, 2006, 25(1): 5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002

[36]

AG®1, AG MP-1 and AG 2 strong anion exchange resin instruction manual[R].

[37]

Dauphas N, Janney P E, Mendybaev R A, et al. Chromato-graphic separation and multicollection-ICPMS analysis of iron: Investigating mass-dependent and -independent isotope effects[J].Analytical Chemistry, 2004, 76(19): 5855-5863. doi: 10.1021/ac0497095

[38]

Tang H, Dauphas N, Craddock P R. High precision iron isotopic analyzes of meteorites and terrestrial rocks: 60Fe distribution and mass fractionation laws[C]//Proceedings of the 40th Lunar and Planetary Science Conference, 2009: 1903.

[39]

Maréchal C, Albarède F. Ion-exchange fractionation of copper and zinc isotopes[J].Geochimica Et Cosmochimica Acta, 2002, 66: 1499-1509. doi: 10.1016/S0016-7037(01)00815-8

[40]

唐索寒, 朱祥坤. AG MP-1阴离子交换树脂元素分离方法研究[J]. 高校地质学报, 2006, 12(3): 398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014

Tang S H, Zhu X K. Separation of some elements using AG MP-1 anion exchange resin[J].Geological Journal of China Universities, 2006, 12(3): 398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014

[41]

唐索寒, 李津, 马健雄, 等. 地质样品中钛的化学分离及双稀释剂法钛同位素测定[J]. 分析化学, 2018, 46(10): 1618-1627. doi: 10.11895/j.issn.0253-3820.181431

Tang S H, Li J, Ma J X, et al. Titanium separation and titanium isotope determination by double spike multicollector inductively coupled plasma mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2018, 46(10): 1618-1627. doi: 10.11895/j.issn.0253-3820.181431

[42]

何连花, 刘季花, 张俊, 等. MC-ICPMS测定富钴结壳中的铜锌同位素的化学分离方法研究[J]. 分析测试学报, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

He L H, Liu J H, Zhang J, et al. Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICPMS[J].Journal of Instrumental Analysis, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

[43]

Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

[44]

张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637.

Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637.

[45]

Ripperger S, Rehkämper M. Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS[J].Geochimica Et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005

[46]

唐索寒, 闫斌, 李津, 等. 少量AG1-X4阴离子交换树脂分离地质标样中的铁及铁同位素测定[J]. 地球化学, 2013, 42(1): 46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006

Tang S H, Yan B, Li J, et al. Separation of Fe using a small amount of AG1-X4 anion exchange resin and Fe isotope compositions of geological reference materials[J].Geochimica, 2013, 42(1): 46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006

[47]

Chang V T C, Makishima A, Belshawa N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18: 296-301. doi: 10.1039/b210977h

[48]

李世珍, 朱祥坤, 何学贤, 等. 用于多接收器等离子体质谱Mg同位素测定的分离方法研究[J]. 岩石矿物学杂志, 2008, 27(5): 449-456. doi: 10.3969/j.issn.1000-6524.2008.05.010

Li S Z, Zhu X K, He X X, et al. Separation of Mg for isotope determination by MC-ICPMS[J].Acta Petrologica Et Mineralogica, 2008, 27(5): 449-456. doi: 10.3969/j.issn.1000-6524.2008.05.010

[49]

Bolou-Bi E B, Vigier N, Brenot A, et al. Magnesium isotope compositions of natural reference materials[J].Geostandards and Geoanalytical Research, 2009, 33(1): 95-109. doi: 10.1111/j.1751-908X.2009.00884.x

[50]

Marshall B D, DePaolo D J. Precise age determination and petrogenetic studies using the K-Ca method[J].Geochimica Et Cosmochimica Acta, 1982, 46: 2537-2545. doi: 10.1016/0016-7037(82)90376-3

[51]

He Y, Wang Y, Zhu C W, et al. Mass-independent and mass-dependent Ca isotopic compositions of thirteen geological reference materials measured by thermal ionization mass spectrometry[J].Geostandards and Geoanalytical Research, 2017, 41(2): 283-302. doi: 10.1111/ggr.12153

[52]

Pietruszka A J, Walker R J, Candela P A, et al. Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: An evaluation of matrix effects[J].Chemical Geology, 2006, 225: 121-136. doi: 10.1016/j.chemgeo.2005.09.002

[53]

Pearce C R, Cohen A S, Parkinson I J, et al. Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2009, 33(2): 219-229. doi: 10.1111/j.1751-908X.2009.00012.x

[54]

Li J, Zhu X K, Tang S H, et al. High-precision measurement of molybdenum isotopic compositions of selected geochemical reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3): 405-415. doi: 10.1111/j.1751-908X.2015.00369.x

[55]

Schoenberg R, Zink S, Staubwasser M, et al. The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS[J].Chemical Geology, 2008, 249: 294-306. doi: 10.1016/j.chemgeo.2008.01.009

[56]

Schiller M, van Kooten E, Holst J C, et al. Precise mea-surement of chromium isotopes by MC-ICPMS[J].Journal of Analytical Atomic Spectrometry, 2014, 29: 1406-1416. doi: 10.1039/C4JA00018H

[57]

Li C F, Feng L J, Wang X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J].Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2375-2383. doi: 10.1039/C6JA00265J

[58]

Makishima A, Zhu X K, Belshaw N S, et al. Separation of titanium from silicates for isotopic ratio determination using multiple collector ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2002, 17: 1290-1294. doi: 10.1039/b204349a

[59]

唐索寒, 朱祥坤, 赵新苗, 等. 离子交换分离和多接收等离子体质谱法高精度测定钛同位素的组成[J]. 分析化学, 2011, 39(12): 1830-1835.

Tang S H, Zhu X K, Zhao X M, et al. Ion exchange chromatography and multicollector-inductively coupled plasma-mass spectrometry for high precision isotopic measurements of titanium isotope ratios[J]. Chinese Journal of Analytical Chemistry, 2011, 39(12): 1830-1835.

[60]

Zhang J J, Dauphas N, Davis A M, et al. A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites[J].Journal of Analytical Atomic Spectrometry, 2011, 26: 2197-2205. doi: 10.1039/c1ja10181a

[61]

Hibiya Y, Iizuka T, Yamashita K, et al. Sequential chem-ical separation of Cr and Ti from a single digest for high-precision isotope measurements of planetary materials[J].Geostandards and Geoanalytical Research, 2019, 43(1): 133-145. doi: 10.1111/ggr.12249

[62]

He X, Ma J, Wei G, et al. A new procedure for titanium separation in geological samples for 49Ti/47Ti ratio mea-surement by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2020, 35: 100-106. doi: 10.1039/C9JA00316A

[63]

孙剑, 朱祥坤, 唐索寒, 等. AG MP-1阴离子交换树脂元素分离方法再研究[J]. 现代地质, 2010, 24(5): 48-51.

Sun J, Zhu X K, Tang S H, et al. Further investigation on elemental separation using AG MP-1 anion exchange resin[J]. Geoscience, 2010, 24(5): 48-51.

[64]

闻静, 张羽旭, 温汉捷, 等. 特殊地质样品中钼同位素分析的化学前处理方法研究[J]. 岩矿测试, 2020, 39(1): 30-40.

Wen J, Zhang Y X, Wen H J, et al. Research on the chemical pretreatment for Mo isotope analysis of special geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40.

[65]

Hastuti A A M B, Costas-Rodríguez M, Anoshkina Y, et al. High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery[J].Analytical and Bioanalytical Chemistry, 2020, 412: 727-738. doi: 10.1007/s00216-019-02291-2

[66]

Frank A B, Klaebe R M, Löhr S, et al. Chromium isotope composition of organic-rich marine sediments and their mineral phases and implications for using black shales as a paleoredox archive[J].Geochimica Et Cosmochimica Acta, 2020, 270: 338-359. doi: 10.1016/j.gca.2019.11.035

[67]

Yan B, Zhu X, He X, et al. Zn isotopic evolution in Early Ediacaran ocean: A global signature[J].Precambrian Research, 2019, 320: 472-483. doi: 10.1016/j.precamres.2018.11.021

[68]

Fan J J, Li J, Wang Q, et al. High-precision moly-bdenum isotope analysis of low-Mo igneous rock samples by MC-ICP-MS[J].Chemical Geology, 2020, 545: 119648. doi: 10.1016/j.chemgeo.2020.119648

相似文献(共20条)

[1]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[2]

奥地利安乐帕有限公司. 不同材质消解罐对煤炭中汞精确测定的影响. 岩矿测试, 2007, 26(4): 349-349.

[3]

金钦汉, 王大宁. 微波技术在分析样品预处理中的应用. 岩矿测试, 1992, (1): 87-94.

[4]

彭炳先, 吴代赦, 李萍. 煤中痕量溴的分析测试方法研究进展. 岩矿测试, 2010, 29(6): 761-767.

[5]

李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

[6]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[7]

熊英, 吴峥, 董亚妮, 裴若会, 刘晓艳, 吴赫, 张艳. 封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼. 岩矿测试, 2015, 34(6): 623-628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004

[8]

甘树才, 何克, 张施济, 周少红. 离子交换分离——荧光分光光度法测定地质样品中痕量铌. 岩矿测试, 1987, (1): 27-30.

[9]

袁永海, 杨锋, 余红霞, 刘希军, 许继峰. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

[10]

胡婧, 刘卫国. 离子交换色层法测定低浓度铵态氮水样的氮同位素研究. 岩矿测试, 2013, 32(3): 495-501.

[11]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[12]

石俊仙, 姚建贞, 张勤, 何江. 阳离子交换树脂静态分离-催化分光光度法测定生物样品中痕量碘. 岩矿测试, 2006, 25(4): 327-330.

[13]

张巽, 谢智. 铼—锇同位素分析中样品的预处理. 岩矿测试, 1997, (4): 284-288.

[14]

黄小文, 漆亮, 高剑峰. 铼-锇同位素分析样品预处理研究进展. 岩矿测试, 2011, 30(1): 90-103.

[15]

闻静, 张羽旭, 温汉捷, 朱传威, 樊海峰. 特殊地质样品中钼同位素分析的化学前处理方法研究. 岩矿测试, 2020, 39(1): 30-40. doi: 10.15898/j.cnki.11-2131/td.201906190087

[16]

朱传威, 温汉捷, 樊海峰, 张羽旭, 刘洁, 杨涛, 王光辉. 铅锌矿床地质样品的Ge同位素预处理方法研究. 岩矿测试, 2014, 33(3): 305-311.

[17]

黄晓纯, 刘昌弘, 张军, 董泳秀, 刘文华, 赵秋香, 李锡坤. ICP-MS测定蔬菜样品中重金属元素的两种微波消解前处理方法. 岩矿测试, 2013, 32(3): 415-419.

[18]

刘凤香, 王雪英. 同位素测定样品中钙和锶的分离. 岩矿测试, 1992, (3): 240-242.

[19]

赵志琦, 刘丛强, . 河水样品中硼的分离及其同位素组成测定. 岩矿测试, 2002, (4): 279-283.

[20]

杨刚, 陈江峰, 杨胜洪, 屈文俊, 杜安道. 同位素稀释等离子体质谱法准确测定地质样品中痕量铼. 岩矿测试, 2006, 25(2): 125-128.

计量
  • PDF下载量(41)
  • 文章访问量(2791)
  • HTML全文浏览量(797)
  • 被引次数(0)
目录

Figures And Tables

金属同位素质谱中分析样品处理的基本原则与方法

李津, 唐索寒, 马健雄, 朱祥坤