【引用本文】 王尧, 田衎, 封跃鹏, 等. 土壤中总有机碳环境标准样品研制[J]. 岩矿测试, 2021, 40(4): 593-602. doi: 10.15898/j.cnki.11-2131/td.202101150009
WANG Yao, TIAN Kan, FENG Yue-peng, et al. Preparation and Certification of a Soil Total Organic Carbon Reference Material[J]. Rock and Mineral Analysis, 2021, 40(4): 593-602. doi: 10.15898/j.cnki.11-2131/td.202101150009

土壤中总有机碳环境标准样品研制

生态环境部环境发展中心环境标准样品研究所, 国家环境保护污染物计量和标准样品研究重点实验室, 北京 100029

收稿日期: 2021-01-15  修回日期: 2021-04-05  接受日期: 2021-05-04

基金项目: 国家环境保护标准制修订项目(2017-33)

作者简介: 王尧, 博士, 高级工程师, 主要从事环境标准样品研制。E-mail: wang.yao@ierm.com.cn

通信作者: 田衎, 博士, 正高级工程师, 主要从事环境标准样品研制。E-mail: tian.kan@ierm.com.cn

Preparation and Certification of a Soil Total Organic Carbon Reference Material

Institute of Environmental Reference Materials, Ministry of Ecology and Environment; State Environmental Protection Key Laboratory of Pollutant Metrology and Reference Materials, Beijing 100029, China

Corresponding author: TIAN Kan, tian.kan@ierm.com.cn

Received Date: 2021-01-15
Revised Date: 2021-04-05
Accepted Date: 2021-05-04

摘要:土壤环境标准样品是土壤生态环境监测质量控制的重要技术工具。目前,土壤中总有机碳环境标准样品仍为中国环境标准样品体系的空缺,特别是配套燃烧氧化-非分散红外法的土壤标准样品一直未曾问世。本文以有机碳含量较高的农用地土壤为原材料,经干燥、研磨、混匀、装瓶、灭菌等加工步骤,制备获得土壤中总有机碳环境标准样品。分层随机抽取10瓶样品进行均匀性检验,经评价统计量F小于临界值F0.05(9,10),瓶间均匀性相对不确定度(ubb)为1.5%,样品均匀性良好。在室温避光保存条件下,对样品进行了18个月的稳定性检验,稳定性相对不确定度(ults)为1.2%,样品具有良好稳定性。由中国11家实验室采用燃烧氧化-非分散红外法和重铬酸钾容量法进行协作定值,通过对检测结果的数理统计分析,样品量值评定结果为(25.2±1.4)mg/g。该标准样品为采用燃烧氧化-非分散红外法参与定值的土壤中总有机碳环境标准样品,可作为土壤中总有机碳测定标准方法配套的实物标准,满足土壤生态环境监测及相关研究需求,且与国外同类样品具有可比性。

关键词: 土壤, 总有机碳, 环境标准样品, 标准值, 燃烧氧化-非分散红外法

要点

(1) 采用燃烧氧化-非分散红外法研制土壤中总有机碳环境标准样品。

(2) 标准样品不确定度水平达到土壤生态环境监测质量控制要求。

(3) 该批标准样品可作为《土壤有机碳的测定燃烧氧化-非分散红外法》配套的实物标准。

(4) 样品量值浓度与国际同类标准样品具有可比性。

Preparation and Certification of a Soil Total Organic Carbon Reference Material

ABSTRACT

BACKGROUND:

Soil environmental reference materials are important technical tools for the quality control of soil environmental monitoring. However, there is no self-developed environmental matrix reference material with total organic carbon (TOC). In particular, a soil standard sample supporting the combustion oxidation-non-dispersive infrared method has not been developed yet.

OBJECTIVES:

To develop a soil TOC reference material that can support standard methods for the determination of TOC in soil.

METHODS:

Agricultural land soil with a high organic carbon content was selected as the raw material. The soil TOC reference materials were prepared after drying, grinding, mixing, bottling, and sterilization. Ten bottles of the reference materials were randomly sampled in layers, and their homogeneities were determined using combustion oxidation-non-dispersive infrared (NDIR) absorption method. The data were assessed using a single element analysis of variance. The reference material was stored at room temperature, and its stability was determined for 18 months. The test results were assessed using a linear fitting model. Eleven laboratories were organized as the cooperation to determine the TOC content of the prepared reference material using combustion oxidation-NDIR absorption method and potassium dichromate volumetric method. All measurement data were statistically analyzed to obtain the certified value and uncertainty of the reference material.

RESULTS:

The soil TOC reference material exhibited good homogeneity and stability. After evaluation, the F value was determined to be less than the critical value of F0.05 (9, 10). Additionally, the relative uncertainty (ubb) of the uniformity between bottles was 1.5%, and the sample exhibited good uniformity. The stability uncertainty was 1.2%, which indicated good stability. The certified value of the soil TOC reference material was determined to be (25.2±1.4)mg/g, using the grand mean of the collaborative determination results from multiple laboratories.

CONCLUSIONS:

A soil TOC reference material was developed using combustion oxidation-NDIR absorption method. This reference material can be used to support the standard determination methods of TOC in soil and meets the requirements of the studies on TOC content in soil. Moreover, it is comparable with similar foreign samples.

KEY WORDS: soil, total organic carbon, environmental reference material, certified value, combustion oxidation non-dispersive infrared

HIGHLIGHTS

(1) A soil TOC reference material was developed using combustion oxidation-NDIR absorption method.

(2) The uncertainty range met the quality control requirements of soil environmental monitoring.

(3) The reference material supported the standard method "Soil—Determination of Organic Carbon—Combustion Oxidation Nondispersive Infrared Absorption Method "(HJ 695—2014)

(4) The certified value was comparable to that of the overseas TOC reference materials.

本文参考文献

[1] Lefèvre C,Rekik F,Alcantara V. Soil organic carbon: The hidden potential[M] . : Food and Agriculture Organization of the United Nations, 2017
[2]

Ramesh T, Bolan N S, Kirkham M B, et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review[J]. Advances in Agronomy, 2019, 156: 1-107.

[3]

Avramidis P, Nikolaou K, Bekiari V, et al. Total organic carbon and total nitrogen in sediments and soils: A comparison of the wet oxidation-titration method with the combustion-infrared method[J].Agriculture and Agricultural Science Procedia, 2015, 4: 425-430. doi: 10.1016/j.aaspro.2015.03.048

[4]

冯锦, 崔东, 孙国军, 等. 新疆土壤有机碳与土壤理化性质的相关性[J]. 草业科学, 2017, 34(4): 692-697.

Feng J, Cui D, Sun G J, et al. Soil organic carbon in relation to soil physicochemical properties in Xinjiang[J]. Pratacultural Science, 2017, 34(4): 692-697.

[5]

蔡婷, 张枝焕, 王新伟, 等. 有机碳含量对土壤剖面中多环芳烃纵向迁移的影响[J]. 环境科学学报, 2019, 39(3): 880-890.

Cai T, Zhang Z H, Wang X W, et al. Effects of total content of organic carbon (TOC) on the vertical migration of polycyclic aromatic hydrocarbons (PAHs) in soil profiles[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 880-890.

[6]

邱灵佳, 黄国林, 苏玉, 等. 总有机碳测定方法研究进展[J]. 广东化工, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050

Qiu L J, Huang G L, Su Y, et al. An overview on current measurement methods of total organic carbon[J].Guangdong Chemical Industry, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050

[7]

骆永明,李广贺,李发生. 中国土壤环境管理支撑技术体系研究[M] . 北京: 科学出版社, 2015: 70-75.

Luo Y M,Li G H,Li F S. Research on supporting technology system of soil environment management in China[M] . Beijing: Science Press, 2015: 70-75.
[8]

田洪海, 邢小茹, 宁远英, 等. 我国环境标准样品发展及应用[J]. 中国环境监测, 2019, 35(5): 12-17.

Tian H H, Xing X R, Ning Y Y, et al. A review on the development and application of environmental reference materials[J]. Environmental Monitoring in China, 2019, 35(5): 12-17.

[9]

李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158.

Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158.

[10]

陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244.

Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244.

[11]

夏龙龙, 颜晓元, 蔡祖聪, 等. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841.

Xia L L, Yan X Y, Cai Z C, et al. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841.

[12]

张秀, 赵永存, 谢恩泽, 等. 土壤有机碳时空变化研究进展与展望[J]. 农业环境科学学报, 2020, 39(4): 673-679.

Zhang X, Zhao Y C, Xie E Z, et al. Spatio-temporal change of soil organic carbon, progress and prospects[J]. Journal of Agro-Environment Science, 2020, 39(4): 673-679.

[13]

李雄, 张旭博, 孙楠, 等. 不同土地利用方式对土壤有机碳比例的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1508-1519.

Li X, Zhang X B, Sun N, et al. Impact of land uses on the ratio of soil organic and inorganic carbon[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1508-1519.

[14]

Zhang H L, Rattan L, Zhao X, et al. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China[J]. Advances in Agronomy, 2014, 124: 1-36.

[15]

蒋腊梅, 杨晓东, 杨建军, 等. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062

Jiang L M, Yang X D, Yang J J, et al. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors[J].Acta Prataculturae Sinica, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062

[16]

周李磊, 朱华忠, 钟华平, 等. 新疆伊犁地区草地土壤全碳含量空间格局分析[J]. 草业科学, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745

Zhou L L, Zhu H Z, Zhong H P, et al. Spatial analysis of the soil total carbon in Ili, Xinjiang Uygur Autonomous Region, China[J].Pratacultural Science, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745

[17]

李朝英, 郑路. 土壤颗粒粒径及进样量对TOC含量测定精度的影响[J]. 上海农业学报, 2018, 34(5): 8-13.

Li Z Y, Zheng L. Effects of soil particle size and sample size on the determination accuracy of TOC content[J]. Acta Agriculturae Shanghai, 2018, 34(5): 8-13.

[18]

田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88.

Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88.

[19]

生态环境部. 土壤环境监测分析方法[M] . 北京: 中国环境出版集团, 2019: 141-149.

Ministry of Ecology and Environment . Soil environment monitoring and analysis method[M] . Beijing: China Environment Publishing Group, 2019: 141-149.
[20]

Wang J P, Wang X J, Zhang J, et al. Evaluating loss-on-ignition method for determinations of soil organic and inorganic carbon in arid soils of northwestern China[J]. Pedosphere, 2013, 23(5): 593-599.

[21]

李国傲, 陈雪, 孙建伶, 等. 土壤有机碳含量测定方法评述及最新研究进展[J]. 江苏农业科学, 2017, 45(5): 22-26.

Li G A, Chen X, Sun J L, et al. A review and the latest research progress of soil organic carbon content determination methods[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 22-26.

[22]

吴才武, 夏建新, 段峥嵘, 等. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453-460.

Wu C W, Xia J X, Duan Z R, et al. Review on detection methods of soil organic matter (SOM)[J]. Soils, 2015, 47(3): 453-460.

[23]

田云飞, 安俊芳, 陶士敏, 等. 重铬酸钾氧化-分光光度法测定土壤有机碳含量的研究[J]. 现代化工, 2020, 40(4): 231-235.

Tian Y F, An J F, Tao S M, et al. Determination of organic carbon content in soil by potassium dichromate oxidation-spectrophotometry[J]. Modern Chemical Industry, 2020, 40(4): 231-235.

[24]

杨丹, 潘建明. 总有机碳分析技术的研究现状及进展[J]. 浙江师范大学学报(自然科学版), 2008, 31(4): 441-444.

Yang D, Pan J M. Progress and study on analytical approach of total organic carbon[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2008, 31(4): 441-444.

[25]

谢娟, 张心昱, 王秋凤, 等. 燃烧法与化学氧化法测定不同pH土壤有机碳之比较[J]. 土壤通报, 2013, 44(2): 333-337.

Xie J, Zhang X Y, Wang Q F, et al. Comparative determination of soil organic carbon with different pH using combustion method and chemical oxidation method[J]. Chinese Journal of Soil Science, 2013, 44(2): 333-337.

[26]

于艳梅, 刘小粉, 王艳丹, 等. 酸性土壤有机碳两种测定方法的比较[J]. 中国土壤与肥料, 2017, (5): 152-156.

Yu Y M, Liu X F, Wang Y D, et al. Comparison of two methods for determining soil organic carbon in acid soil[J]. Soil and Fertilizer Sciences in China, 2017, (5): 152-156.

[27]

唐伟祥, 孟凡乔, 张煜, 等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 552-557.

Tang W X, Meng F Q, Zhang Y, et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 552-557.

[28]

何海龙, 君珊, 张学宽, 等. 总有机碳(TOC)分析仪测定土壤中TOC的研究[J]. 分析仪器, 2014, (5): 59-61.

He H L, Jun S, Zhang X K, et al. Analysis of total organic carbon in soil by TOC analyzer[J]. Analytical Instrumentation, 2014, (5): 59-61.

[29]

李小涵, 王朝辉. 两种测定土壤有机碳方法的比较[J]. 分析仪器, 2009, (5): 78-80.

Li X H, Wang Z H. Comparison of two soil organic carbon determination methods[J]. Analytical Instrumentation, 2009, (5): 78-80.

[30]

Linsinger T P J, Pauwels J, van der Veen A M H, et al. Homogeneity and stability of reference materials[J].Accredition and Quality Assurance, 2001, 6(1): 20-25. doi: 10.1007%2Fs007690000261

[31]

吴庆标, 王效科, 郭然, 等. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5): 743-747.

Wu Q B, Wang X K, Guo R, et al. Soil organic carbon stability and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(5): 743-747.

[32]

田衎, 周裕敏, 邢书才, 等. 土壤类标准样品的稳定性研究方法探讨[J]. 理化检验(化学分册), 2017, 53(2): 201-204.

Tian K, Zhou Y M, Xing S C, et al. Discussion on the stability research methods of soil reference materials[J]. Physical and Chemical Test (Part B: Chemical Analysis), 2017, 53(2): 201-204.

[33]

田衎, 王尧, 房丽萍, 等. 土壤中重金属可提取态(氯化钙法)分析质量控制样品的研制[J]. 中国环境监测, 2019, 35(6): 110-117.

Tian K, Wang Y, Fang L P, et al. Preparation and certification of quality control sample for CaCl2-extractable heavy metals in agricultural soil[J]. Environmental Monitoring in China, 2019, 35(6): 110-117.

[34]

田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120.

Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120.

[35]

黄梓宸, 周瑾艳, 黄彦捷, 等. 水中总有机碳溶液标准物质的研制[J]. 食品安全质量检测学报, 2019, 10(11): 3530-3535.

Huang Z C, Zhou J Y, Huang Y J, et al. Development of total organic carbon reference materials in water solution[J]. Journal of Food Safety and Quality, 2019, 10(11): 3530-3535.

相似文献(共20条)

[1]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[4]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[5]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[6]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[9]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[10]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[11]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[12]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[13]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[14]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[15]

赵秀峰, 高孝礼, 曹磊, 曹景洋, 路新成. 土壤界限含水率标准物质研制. 岩矿测试, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119

[16]

田衎, 贺岩涛, 张覃, 郭伟臣, 赵亚娴, 岳亚萍, 杨永. 环境标准样品均匀性检验数据漂移校正方法探讨. 岩矿测试, 2020, 39(3): 425-433. doi: 10.15898/j.cnki.11-2131/td.201912040168

[17]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[18]

顾勇冰, 张春牛, 郑云法. 1-偶氮苯-3-(5-氯-2-吡啶)-三氮烯的合成及其与镍的显色反应. 岩矿测试, 2005, (2): 112-114.

[19]

田芹, 吴淑琪, 佟玲, 罗代洪. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

[20]

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

计量
  • PDF下载量(3)
  • 文章访问量(1010)
  • HTML全文浏览量(34)
  • 被引次数(0)
目录

Figures And Tables

土壤中总有机碳环境标准样品研制

王尧, 田衎, 封跃鹏, 王伟