【引用本文】 李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116
LI Xin-wei, LI Chao, ZHOU Li-min, et al. Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116

贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质科学院Re-Os同位素地球化学重点实验室, 北京 100037

收稿日期: 2019-07-31  修回日期: 2019-10-12  接受日期: 2019-10-21

基金项目: 国家自然科学基金青年基金项目(41703059);中国地质调查局地质调查项目(DD20190475)

作者简介: 李欣尉, 硕士, 工程师, 从事Re-Os同位素研究。E-mail:lixinwei-re-os@qq.com

通信作者: 李超, 博士, 副研究员, 从事Re-Os同位素研究。E-mail:Re-Os@163.com

Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion

1. 

National Research Center for Geoanalys, Beijing 100037, China

2. 

Key Laboratory of Re-Os Isotope Geochemistry, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: LI Chao, Re-Os@163.com

Received Date: 2019-07-31
Revised Date: 2019-10-12
Accepted Date: 2019-10-21

摘要:我国上扬子地台地区在奥陶系—志留系之交广泛发育蕴含丰富页岩气资源的五峰组—龙马溪组富有机质沉积岩。采用Re-Os同位素体系对该套沉积地层进行研究,不仅能得到精确的地层沉积年龄,同时根据Re、Os元素的富集机制,对该时期沉积环境进行有效反演,可以为这一阶段发生的地球历史上第二大规模的生物绝灭事件的触发机制提供更合理的解释。本文在贵州正安县班竹1井岩心采集11件碳质泥岩样品,岩心样品连续且完整跨越奥陶系五峰组—志留系龙马溪组界线地层,通过对该样品开展高精度Re-Os同位素研究,获得了奥陶系—志留系地层界线Re-Os同位素年龄为443.68±6.24Ma[2σn=7,(187Os/188Os)i=0.699±0.019,MSWD=0.55],其结果与国际地层委员会发布的年龄(443.7±1.5Ma)高度一致,为奥陶系—志留系界线年龄提供了直接、准确的年龄依据。Os同位素特征反映了大量陆源碎屑参与成岩过程、多期火山活动的发生及冰期向间冰期的转换。连续沉积地层Re-Os同位素特征的变化反映了研究区奥陶系五峰组—志留系龙马溪组沉积环境经历富氧—缺氧—富氧的变化,指示赫南特期冰川事件和火山喷发共同造成了生物大绝灭并促进了有机质的富集,为五峰组—龙马溪组富有机质沉积岩提供了生烃潜力。

关键词: Re-Os同位素定年, 奥陶系—志留系界线, Os同位素特征, 古环境演化, 五峰组—龙马溪组富有机质沉积岩, 热电离质谱法

要点

(1) 采用Re-Os同位素定年技术首次直接获得了上扬子地台地区奥陶系—志留系地层界线年龄。

(2) 187Os/188Os变化规律指示五峰组—龙马溪组地层沉积经历了富氧—缺氧—富氧的环境转变。

(3) Os同位素特征反映了五峰组—龙马溪组地层沉积过程中大量的陆源物质供给。

(4) Re-Os同位素体系在反演火山活动、冰期事件与生物绝灭事件的相互关系中显现重要潜力。

Accurate Determination of the Age of the Carbonaceous Mudstone of the Ordovician-Silurian Boundary in Zheng'an County, Guizhou Province by Re-Os Isotope Dating Method and Its Application in Paleoenvironmental Inversion

ABSTRACT

BACKGROUND:

Organic-rich sedimentary rocks of the Wufeng-Longmaxi Formation are widely developed in the Ordovician-Silurian boundary of the Upper Yangtze platform in China, which is rich in shale gas resources. Using the Re-Os isotope system to study this set of sedimentary formations, not only can the precise age of the formation be obtained, but also the sedimentary environment of this period based on the enrichment mechanism of Re and Os elements can be inferred. This provides a more reasonable explanation for the trigger mechanism of the second large-scale biological extinction event in Earth's history.

OBJECTIVES:

To accurately constrain the age of carbonaceous mudstone and infer the conditions of the paleoenvironment.

METHODS:

The 11 carbonaceous mudstone samples from dirll core of Banzhu No.1, Zheng'an County, Guizhou Province were studied. These dirll core samples were continuous across the boundary of the Ordovician Wufeng Formation-Silurian Longmaxi Formation. Through the high precision Re-Os isotopic dating of the 11 samples, the Ordovician-Silurian boundary stratigraphic age was obtained.

RESULTS:

The Re-Os isotope age was calculated to be 443.68±6.24Ma[2σ, n=7, (187Os/188Os)i=0.699±0.019, MSWD=0.55]. The results were highly consistent with the age (443.7±1.5Ma) published by the International Commission on Stratigraphy, which provided a direct and accurate age basis for the Ordovician-Silurian boundary. Os isotope characteristics showed that amounts of terrigenous detrital were involved in the diagenesis, the occurrence of multi-stage volcanic activities and the transition from glacial period to interglacial period. The Re-Os isotopic features of the continuous sedimentary strata reflected that the sedimentary environment of the Ordovician Wufeng Formation-Silurian Longmaxi Formation had undergone the change of oxygen enrichment-oxygen enrichment-rich oxygen enrichment in this study area.

CONCLUSIONS:

Hirnantian glaciation events and volcanic eruption caused biological extinction and together promoted organic matter enrichment, providing hydrocarbon generation potential for the Wufeng Formation-Longmaxi Formation organic-rich sedimentary rocks.

KEY WORDS: Re-Os isotope dating, Ordovician-Silurian boundary, Os isotope characteristics, paleoenvironmental inversion, Wufeng-Longmaxi Formation organic rich sedimentary rocks, thermal ionization mass spectrometry

HIGHLIGHTS

(1) The Ordovician—Silurian stratigraphic boundary age of the Yangtze platform was obtained by the Re-Os isotope dating technique for the first time.

(2) The variation of 187Os/188Os indicated that the sedimentary environment of the Wufeng Formation—Longmaxi Formation carbonaceous mudstone had undergone the transformation of oxidation-reduction-oxidation.

(3) Os isotope characteristics effectively reflected the supply of terrigenous detrital during deposition.

(4) The Re-Os isotope system showed important potential in inversion of the relationship between volcanic eruptions, Hirnantian glaciation and sedimentary environmental changes and biological extinction events.

本文参考文献

[1]

Tucker R D, Krogh T E, Ross R J, et al. Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain[J].Earth and Planetary Science Letters, 1990, 100(1-3): 51-58. doi: 10.1016/0012-821X(90)90175-W

[2]

Ghavidel-Syooki M, Hassanzadeh J, Vecoli M, et al. Paly-nology and isotope geochronology of the Upper Ordovician-Silurian successions (Ghelli and Soltan Maidan Formations) in the Khoshyeilagh area, Eastern Alborz Range, Northern Iran; Stratigraphic and palaeogeographic implications[J].Review of Palaeobotany & Palynology, 2011, 164(3-4): 251-271.

[3]

Cramer B D, Condon D J, Soderlund U, et al. U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the 'Big Crisis'[J].Geological Society of America Bulletin, 2012, 124(11-12): 1841-1857. doi: 10.1130/B30642.1

[4]

Cooper M R, Crowley Q, Rushton A W A, et al. New age constraints for the Ordovician Tyrone volcanic group, Northern Ireland[J].Journal of the Geological Society, 2008, 165(1): 1-19. doi: 10.1144/0016-76492007-072

[5]

胡艳华, 刘健, 周明忠, 等. 奥陶纪与志留纪钾质斑脱岩研究评述[J]. 地球化学, 2009, 38(4): 393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010

Hu Y H, Liu J, Zhou M Z, et al. An overview of Ordovician and Silurian K-bentonites[J].Geochimica, 2009, 38(4): 393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010

[6]

Hu Y H, Zhou J B, Song B, et al. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J].Science in China Series D (Earth Sciences), 2008, 51(4): 493-498. doi: 10.1007/s11430-008-0028-1

[7]

Li Y F, Zhang T W, Shao D Y, et al. New U-Pb zircon age and carbon isotope records from the Lower Silurian Longmaxi Formation on the Yangtze Platform, South China:Implications for stratigraphic correlation and environmental change[J].Chemical Geology, 2019, 509: 249-260. doi: 10.1016/j.chemgeo.2019.02.003

[8]

罗华, 何仁亮, 潘龙克, 等. 湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 资源环境与工程, 2016, 30(4): 547-550.

Luo H, He R L, Pan L K, et al. LA-ICP-MS zircon U-Pb age and its significance of Late Ordovician-Early Silurian Longmaxi bentonite[J]. Resources Environment & Engineering, 2016, 30(4): 547-550.

[9]

谢尚克, 汪正江, 王剑, 等. 湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄[J]. 沉积与特提斯地质, 2012, 32(4): 65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010

Xie S K, Wang Z J, Wang J, et al. LA-ICP-MS zircon U-Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping Section, Taoyuan, Hunan[J].Sedimentary Geology and Tethyan Geology, 2012, 32(4): 65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010

[10]

熊国庆, 王剑, 李园园, 等. 大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 2017, 37(2): 46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006

Xiong G Q, Wang J, Li Y Y, et al. Zircon U-Pb dating and geological significance of the bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains[J].Sedimentary Geology and Tethyan Geology, 2017, 37(2): 46-58. doi: 10.3969/j.issn.1009-3850.2017.02.006

[11]

熊国庆, 王剑, 李园园, 等. 南大巴山东段上奥陶统五峰组-下志留统龙马溪组钾质斑脱岩锆石U-Pb年龄及其构造意义[J]. 地质学报, 2019, 93(4): 843-864.

Xiong G Q, Wang J, Li Y Y, et al. Zircon U-Pb dating of K-bentonite from Late Ordovician Wufeng Formation and Earlier Silurian Longmaxi Formation in the eastern section of South Dabashan and its tectonic sigification[J]. Acta Geologica Sinica, 2019, 93(4): 843-864.

[12]

Ge X Y, Mou C L, Wang C S, et al. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance[J].Geological Journal, 2019, 54(1): 514-528. doi: 10.1002/gj.3201

[13]

卢斌, 邱振, 周杰, 等. 四川盆地及周缘五峰组-龙马溪组钾质斑脱岩特征及其地质意义[J]. 地质科学, 2017, 52(1): 186-202.

Lu B, Qiu Z, Zhou J, et al. The characteristics and Wufeng Formation and geological significance of the K-bentonite in Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Chinese Journal of Geology, 2017, 52(1): 186-202.

[14]

Yan D T, Chen D Z, Wang Q C, et al. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1-2): 32-39. doi: 10.1016/j.palaeo.2008.12.016

[15]

Wang K, Chatterton B D E, Wang Y, et al. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China:Implications for CO2 changes during the Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 147-158. doi: 10.1016/S0031-0182(97)00046-1

[16]

Delabroye A, Munnecke A, Vecoli M, et al. Phytoplankton dynamics across the Ordovician/Silurian boundary at low palaeolatitudes:Correlations with carbon isotopic and glacial events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312(1-2): 0-97.

[17]

Fan J, Peng P, Melchin M J, et al. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1-4): 160-169. doi: 10.1016/j.palaeo.2009.03.007

[18]

Liu Y, Li C, Algeo T J, et al. Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 180-191. doi: 10.1016/j.palaeo.2016.10.006

[19]

汪啸风, 柴之芳. 奥陶系与志留系界线处生物绝灭事件及其与铱和碳同位素异常的关系[J]. 地质学报, 1989, 60(3): 65-74.

Wang X F, Chai Z F. Terminal Ordovician mass extinction and its relationship to iridium and carbon isotope anomalies[J]. Acta Geologica Sinica, 1989, 60(3): 65-74.

[20]

Chen X, Rong J Y, Charles E, et al. Late Ordovician to Earliest Silurian graptolite and brachiopod biozonation from the Yangtze Region, South China, with a global correlation[J].Geological Magazine, 2000, 137(6): 623-650. doi: 10.1017/S0016756800004702

[21]

林家善, 刘建清, 冯伟明, 等. 黔北下志留统龙马溪组烃源岩有机地球化学特征及其古环境意义[J]. 沉积与特提斯地质, 2014, 34(2): 79-85.

Lin J S, Liu J Q, Feng W M, et al. Organic geochemical signatures and palaeo-environmental implications for the source rocks from the Lower Silurian Longmaxi Formation in Northern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(2): 79-85.

[22]

王辰, 刘建朝, 张海东, 等. 湘西花垣地区奥陶-志留系沉积岩稀土元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2017, 36(3): 534-595.

Wang C, Liu J C, Zhang H D, et al. REE geochemical characteristics of Ordovician-Silurian sedimentary rocks in the Huayuan Area, Hunan Province and their geological significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 534-595.

[23]

Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J].Geology, 2010, 38(7): 599-602. doi: 10.1130/G30961.1

[24]

Gong Q, Wang X, Zhao L, et al. Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction[J].Scientific Reports, 2017, 7(1): 5304-5310. doi: 10.1038/s41598-017-05524-5

[25]

Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia[J].Geology, 2017, 45(7): 631-634. doi: 10.1130/G38940.1

[26]

Finlay A J, Sebly D, Gröcke D R, et al. Tracking the Hirnantian glaciation using Os isotopes[J].Earth and Planetary Science Letters, 2010, 293(3-4): 339-348. doi: 10.1016/j.epsl.2010.02.049

[27]

李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405-414.

Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J]. Acta Geoscientica Sinica, 2014, 35(4): 405-414.

[28]

李欣尉, 杨显德, 李超, 等. 蒸馏法富集纯化Os实验条件研究及其在负离子热电离质谱测量中的应用[J]. 岩矿测试, 2018, 37(4): 102-110.

Li X W, Yang X D, Li C, et al. Study on the conditions for enrichment and purification of Os by microdistillation and its application in NTIMS measurements[J]. Rock and Mineral Analysis, 2018, 37(4): 102-110.

[29]

李超, 王登红, 周利敏, 等. 湖南鲁塘石墨矿Re-Os同位素研究[J]. 岩矿测试, 2017, 36(3): 297-304.

Li C, Wang D H, Zhou L M, et al. Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J]. Rock and Mineral Analysis, 2017, 36(3): 297-304.

[30]

Jenkins R J F, Acooper J, Compston W, et al. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and Southern China[J].Journal of the Geological Society, 2002, 159(6): 645-658. doi: 10.1144/0016-764901-127

[31]

Lanphere M A, Churkin M, Eberlein G D, et al. Radiometric age of the monograptus cyphus graptolite zone in Southeastern Alaska-An estimate of the age of the Ordovician-Silurian boundary[J].Geological Magazine, 1977, 114(1): 15-24. doi: 10.1017/S0016756800043387

[32]

Fullager P D, Bottino M L. Radiometric age of the volcanics at Arisaig, Nova Scotia, and the Ordovician-Silurian boundary[J].Canadian Journal of Earth Sciencen, 1968, 5(2): 311-317. doi: 10.1139/e68-031

[33]

Jaffe L A, Peucker-Ehrenbrink B, Petsch S T, et al. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J].Earth and Planetary Science Letters, 2002, 198(3-4): 339-353. doi: 10.1016/S0012-821X(02)00526-5

[34]

Creaser R A, Sannigrahi P, Chacko T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks:A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J].Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. doi: 10.1016/S0016-7037(02)00939-0

[35]

李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

Li C, Qu W J, Wang D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J].Acta Petrologica et Mineralogica, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

[36] Kendall B,Creaser R A,Sebly D. 187Re-187Os Geochronology of Precambrian Organic-rich Sedimentary Rocks[M] . London: Geological Society, 2009: 85-107.
[37]

徐伦勋, 肖传桃, 龚文平, 等. 论扬子地区上奥陶统五峰组观音桥段的深海成因[J]. 地质学报, 2004, 78(6): 726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002

Xu L X, Xiao C T, Gong W P, et al. A study on the deep-sea sediment of the Guanyinqiao Member of the Upper Ordovician Wufeng Formation in the Yangtze Area[J].Acta Geologica Sinica, 2004, 78(6): 726-732. doi: 10.3321/j.issn:0001-5717.2004.06.002

[38]

王同, 杨克明, 熊亮, 等. 川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 2015, 36(8): 915-925.

Wang T, Yang K M, Xiong L, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in Southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 2015, 36(8): 915-925.

[39]

Cohen A S. The rhenium-osmium isotope system:Applications to geochronological and palaeoenviron-mental problems[J].Journal of the Geological Society, 2004, 161(4): 729-734. doi: 10.1144/0016-764903-084

[40]

Levasseur S, Birck J, Allegre C J, et al. Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater[J].Science, 1998, 282(5387): 272-274. doi: 10.1126/science.282.5387.272

[41]

赵鸿, 李超, 江小均, 等. 浙江长兴"金钉子"灰岩Re-Os富集机制研究[J]. 地质学报, 2015, 89(10): 1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of limestone from Changxing Permian-Triassic Boundary using the Re-Os geochronometer[J].Acta Geologica Sinica, 2015, 89(10): 1783-1791. doi: 10.3969/j.issn.0001-5717.2015.10.006

[42]

Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J].Science, 2008, 321(5888): 550-554. doi: 10.1126/science.1155814

[43]

Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation[J].Science, 2011, 331(6019): 903-906. doi: 10.1126/science.1200803

[44]

Finnegan S, Heim N A, Peters S E, et al. Climate change and the selective signature of the Late Ordovician mass extinction[J].Proceedings of the National Academy of Science, 2012, 109(18): 6829-6834. doi: 10.1073/pnas.1117039109

[45]

Zhou L, Algeo T J, Shen J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234. doi: 10.1016/j.palaeo.2014.12.012

[46]

Cramer B D, Saltzman M R. Sequestration of 12C in the deep ocean during the Early Wenlock (Silurian) positive carbon isotope excursion[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 333-349. doi: 10.1016/j.palaeo.2005.01.009

[47]

Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from Western Laurentia[J].Geology, 2005, 33(2): 109-112. doi: 10.1130/G21219.1

[48]

Young S A, Saltzman M R, Bergström S A, et al. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in Eastern and Central North America:Regional expression of a perturbation of the global carbon cycle[J].Palaeogeography, Palaeoceanography, Palaeoclimatology, 2005, 222(1-2): 53-76. doi: 10.1016/j.palaeo.2005.03.008

[49]

Sheehan P M. The Late Ordovician mass extinction[J]. Annual Reviews of Earth and Planetary Sciences, 2001, 29(29): 331-364.

[50]

Rasmussen C M Ø, Harper D A T. Interrogation of distributional data for the End Ordovician crisis interval:Where did disaster strike?[J].Geological Journal, 2011, 46(5): 478-500.

[51]

Luo G, Algeo T J, Zhan R, et al. Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 339-348. doi: 10.1016/j.palaeo.2015.07.018

[52]

Melchin M J, Holmden C. Carbon isotope chemostra-tigraphy of the Llandovery in Arctic Canada:Implications for global correlation and sea-level change[J].GFF, 2006, 128(2): 173-180. doi: 10.1080/11035890601282173

[53]

Underwood C J, Crowley S F, Marshall J D, et al. High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob's Linn, Scotland) and its global correlation[J].Journal of the Geological Society, 1997, 154(4): 709-718. doi: 10.1144/gsjgs.154.4.0709

[54]

Kaljo D, Martma T, Mannik P, et al. Implications of Gondwana glaciations in the Baltic Late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity[J].Bulletin de la Société Géologique de France, 2003, 174(1): 59-66. doi: 10.2113/174.1.59

[55]

Vecoli M, Riboulleau A, Versteegh G J M, et al. Palynology, organic geochemistry and carbon isotope analysis of a Latest Ordovician through Silurian clastic succession from borehole Tt1, Ghadamis Basin, Southern Tunisia, North Africa:Palaeoenvironmental interpretation[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3-4): 378-394. doi: 10.1016/j.palaeo.2008.05.015

[56]

Munnecke A, Samtleben C, Bickert T, et al. The Ireviken Event in the Lower Silurian of Gotland, Swede-relation to similar Palaeozoic and Proterozoic events[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(1): 99-124.

[57]

Cramer B D, Brett C E, Melchin M J, et al. Revised correlation of the Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy[J].Lethaia, 2011, 44(2): 185-202. doi: 10.1111/j.1502-3931.2010.00234.x

相似文献(共17条)

[1]

严清高, 李超, 江小均, 王忠强, 李云驹, 李伟. 滇中昆阳磷矿成矿时代及沉积环境Re-Os同位素示踪研究. 岩矿测试, 2018, 37(4): 462-474. doi: 10.15898/j.cnki.11-2131/td.201805040054

[2]

王富良, 付勇, 江冉, 周文喜, 葛枝华, 魏帅超, 梁厚鹏, 张鹏. Re-Os同位素在晚新元古代至早寒武世测年及古环境演绎中的应用进展. 岩矿测试, 2016, 35(5): 530-541. doi: 10.15898/j.cnki.11-2131/td.2016.05.012

[3]

刘雪梅, 汤磊, 龙开明, 杨天丽, 刘钊. 负热电离同位素稀释质谱法分析锝97稀释剂. 岩矿测试, 2010, 29(4): 368-372.

[4]

郭春丽, 李超, 伍式崇, 许以明. 湘东南锡田辉钼矿Re-Os同位素定年及其地质意义. 岩矿测试, 2014, 33(1): 142-152.

[5]

李超, 杨雪, 赵鸿, 周利敏, 杜安道, 李欣尉, 屈文俊. pg-ng级Os同位素热表面电离质谱高精度分析测试技术. 岩矿测试, 2015, 34(4): 392-398. doi: 10.15898/j.cnki.11-2131/td.2015.04.003

[6]

顾尚义, 杜定全, 付勇, 孙士军, 李超. 江南造山带西南缘石英脉型金矿中毒砂Re-Os同位素定年研究. 岩矿测试, 2016, 35(5): 542-549. doi: 10.15898/j.cnki.11-2131/td.2016.05.013

[7]

张聪, 夏响华, 杨玉茹, 白名岗, 代峰, 熊杰. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义. 岩矿测试, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

[8]

李超, 王登红, 周利敏, 赵鸿, 李欣尉, 屈文俊. 湖南鲁塘石墨矿Re-Os同位素研究. 岩矿测试, 2017, 36(3): 297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050

[9]

李宁, 杨富全, 李超, 张志欣, 杨成栋. 新疆东天山小白石头钨(钼)矿辉钼矿Re-Os同位素年龄及成矿时代. 岩矿测试, 2019, 38(1): 112-122. doi: 10.15898/j.cnki.11-2131/td.201805250064

[10]

江小均, 王忠强, 李超, 郭忠林, 柴建华, 邱文龙, 王加昇. 滇东北会泽超大型铅锌矿Re-Os同位素特征及喜山期成矿作用动力学背景探讨. 岩矿测试, 2018, 37(4): 448-461. doi: 10.15898/j.cnki.11-2131/td.201805030054

[11]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[12]

李欣尉, 杨显德, 李超, 周利敏, 赵鸿. 蒸馏法富集纯化Os实验条件研究及其在负离子热电离质谱测量中的应用. 岩矿测试, 2018, 37(4): 439-447. doi: 10.15898/j.cnki.11-2131/td.201805020054

[13]

松权衡, 邢树文, 张勇, 李超, 王岩, 于城. 吉林长安堡钼(铜)矿床成矿时代及物质来源:来自辉钼矿Re-Os同位素证据. 岩矿测试, 2016, 35(5): 550-557. doi: 10.15898/j.cnki.11-2131/td.2016.05.014

[14]

王兆荣, 彭子成. 热电离质谱铀系法测定碳酸盐标样. 岩矿测试, 1998, (4): 268-270.

[15]

汤磊, 刘雪梅, 刘钊, 杨天丽, 龙开明. 超微量钐同位素的热表面电离质谱分析. 岩矿测试, 2010, 29(6): 657-660.

[16]

郝新丽, 韩思航, 杨磊, 戴忆竹, 黄璐瑶, 王竞铮. 基于热转换元素分析同位素比质谱法研究水样中有机物对氢稳定同位素比值的影响. 岩矿测试, 2019, 38(5): 503-509. doi: 10.15898/j.cnki.11-2131/td.201811150121

[17]

王晓华, 石丽明, 刘美美, 孙青, 储国强. 古气候古环境研究中类脂化合物单体同位素分析. 岩矿测试, 2008, 27(6): 435-440.

计量
  • PDF下载量(8)
  • 文章访问量(62)
  • HTML全文浏览量(6)
  • 被引次数(0)
目录

Figures And Tables

贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演

李欣尉, 李超, 周利敏, 赵鸿