【引用本文】 李妤, 田志仁, 蒋月, 等. 土壤中锌元素测定精密度评价标准建议值的探讨[J]. 岩矿测试, 2021, 40(5): 731-739. doi: 10.15898/j.cnki.11-2131/td.202009090123
LI Yu, TIAN Zhi-ren, JIANG Yue, et al. Research on the Precision Evaluation Standard for Determination of Zn in Soils[J]. Rock and Mineral Analysis, 2021, 40(5): 731-739. doi: 10.15898/j.cnki.11-2131/td.202009090123

土壤中锌元素测定精密度评价标准建议值的探讨

1. 

北京科技大学能源与环境工程学院, 北京 100083

2. 

中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012

3. 

重庆市生态环境监测中心, 重庆 401147

收稿日期: 2020-09-09  修回日期: 2021-03-14  接受日期: 2021-05-03

基金项目: 国家重点研发计划项目"场地土壤与地下水污染评估与风险预测方法研究"(2018YFC1800204)

作者简介: 李妤, 硕士, 工程师, 研究方向为环境科学与工程。E-mail: liyu@mpi1972.com

通信作者: 田志仁, 硕士, 高级工程师, 从事土壤与地下水生态环境监测工作。E-mail: 1731427795@qq.com

Research on the Precision Evaluation Standard for Determination of Zn in Soils

1. 

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. 

State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China

3. 

Chongqing Environmental Monitoring Centre, Chongqing 401147, China

Corresponding author: TIAN Zhi-ren, 1731427795@qq.com

Received Date: 2020-09-09
Revised Date: 2021-03-14
Accepted Date: 2021-05-03

摘要:将标准样品和一定数量已知浓度水平的实际样品,在特定的实验室进行比对测试,从而获得某一项目分析测试方法的精密度控制水平,是当前技术规范或标准方法制定过程的常用手段。本文选取来自中国31个省(区、市)的大批量(871个)、不同浓度梯度、不同类型(34种)、具有地域代表性的实际土壤样品,开展了土壤中Zn元素含量测定的精密度控制研究,全部以盲样方式分发至76家不同的实验室,每个样品由2~4家不同实验室进行室内和室间平行比对测试,旨在提出更具有效性、代表性和普适性的精密度控制评价标准建议值。实验中选用当前国家土壤生态环境监测工作中最常用的两种标准方法——火焰原子吸收光谱法(AAS)和波长色散X射线荧光光谱法(XRF)测试土壤中Zn含量。数据分析结果表明,两种不同的测试方法下其精密度控制结果无显著差异;不同土壤类型可能会对精密度控制水平产生影响,主要原因在于不同土壤类型存在基质组成的差异,可能会导致消解程度或压片密实度不同。因此,在实际监测工作中,还需考虑不同类型土壤的分析测试条件需求差异和测试结果的可比性。

关键词: , 土壤, 生态环境监测, 火焰原子吸收光谱法, 波长色散X射线荧光光谱法, 精密度, 相对偏差

要点

(1) 提出了更具有效性、代表性和普适性的土壤中Zn元素含量测定精密度控制评价标准建议值。

(2) AAS和XRF两种分析方法测试土壤中Zn含量时具有较理想的可比性。

(3) 不同土壤类型的样品得到测试结果的相对偏差有所差异。

Research on the Precision Evaluation Standard for Determination of Zn in Soils

ABSTRACT

BACKGROUND:

The current technical specification, or standard method, to obtain the precision control level of a certain test item is to send the standard sample and a certain number of actual samples, with a known concentration level, to specific laboratories for comparison testing.

OBJECTIVES:

To provide a more effective, representative and universal precision control evaluation standard.

METHODS:

871 actual soil samples with different concentration gradients, types (34 kinds) and geographical representation from 31 provinces (autonomous regions and municipalities) were selected and distributed blind to 76 different laboratories. Each sample was subjected to indoor and inter-laboratory parallel comparison tests by 2 to 4 different laboratories. Two standard methods, flame atomic absorption spectrometry (AAS) and wavelength dispersive X-ray fluorescence spectrometry (WD-XRF), which are commonly used in soil ecological environment monitoring in China, were selected.

RESULTS:

When the concentration of Zn is less than 50mg/kg, it is proposed to control RD ≤ 15% in laboratory and RD' ≤ 20% inter laboratories for the open code test samples and standard samples, while RD ≤ 20% in laboratory and RD' ≤ 30% inter laboratories for the blind test samples. In the case of the concentration of Zn is 50-90mg/kg, it is proposed to control RD ≤ 10% in laboratory and RD' ≤ 20% inter laboratories for the open code test samples and standard samples, while RD ≤ 15% in laboratory and RD' ≤ 25% inter laboratories for the blind test samples. When the concentration of Zn is higher than 90mg/kg, it is proposed to control RD ≤ 10% in laboratory and RD' ≤ 15% inter laboratories for the open code test samples and standard samples, while RD ≤ 10% in laboratory and RD' ≤ 20% inter laboratories for the blind test samples.

CONCLUSIONS:

There is no significant difference in the precision control results under AAS and XRF analysis methods. Different soil types may affect the precision control level. The main reason is that different matrix compositions of different soil types lead to different levels of digestion or compaction. Therefore, in actual monitoring work, it is also necessary to consider the difference in requirements of analysis and test conditions for different types of soil and the comparability of test results.

KEY WORDS: zinc, soils, ecological environment monitoring, flame atomic absorption spectrometry, wavelength dispersive X-ray fluorescence spectrometry, precision, relative deviation

HIGHLIGHTS

(1) A more effective, representative and universal precision control evaluation standard for the determination of Zn in soil was proposed.

(2) AAS and XRF were comparable when measuring Zn content in soil.

(3) The relative deviation of the test results obtained from separate soil types was different.

本文参考文献

[1]

周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料, 2020, (2): 83-92.

Zhou J M. Analysis on the current situation of heavy metal pollution in China's cultivated land and the sources of man-made pollution[J]. Soil and Fertilizer Sciences in China, 2020, (2): 83-92.

[2]

陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272.

Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sincia, 2018, 55(2): 261-272.

[3]

徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159.

Xu J M, Meng J, Liu X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159.

[4]

Nihal G, Latha R, Sudip M, et al. Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes[J].Chemosphere, 2021, . doi: 10.1016/j.chemosphere.2021.129573

[5]

Weissmannova H D, Pavlovsky J. Indices of soil contami-nation by heavy metals-Methodology of calculation for pollution assessment (minireview)[J]. Environmental Monitoring and Assessment, 2017, .

[6]

杜文娟. 浅谈环境监测在生态环境保护中的作用及发展措施[J]. 中国资源综合利用, 2020, 38(1): 129-131.

Du W J. Discussion on the function and development measures of environmental monitoring in ecological environment protection[J]. China Resources Comprehensive Utilization, 2020, 38(1): 129-131.

[7]

单中炳. 试析土壤监测质量控制问题[J]. 中国资源综合利用, 2019, 37(8): 135-137. doi: 10.3969/j.issn.1008-9500.2019.08.038

Shan Z B. Analysis on quality control of soil monitoring[J].China Resources Comprehensive Utilization, 2019, 37(8): 135-137. doi: 10.3969/j.issn.1008-9500.2019.08.038

[8]

Niu X J, Wang X H, Gao J, et al. Has third-party monitoring improved environmental data quality? An analysis of air pollution data in China[J]. Journal of Environmental Management, 2020, .

[9]

王玉云, 赵兵. 环境监测中王水水浴、微波消解——原子荧光法测定土壤中砷和汞的方法探究[J]. 四川环境, 2018, 37(6): 102-107.

Wang Y Y, Zhao B. Study on determination of arsenic and mercury in soil by aqua regia water bath, microwave digestion-atomic fluorescence method in environmental monitoring[J]. Sichuan Environment, 2018, 37(6): 102-107.

[10]

李佳. 浅谈环境监测工作质量管理体系运行方法[J]. 环境保护与循环经济, 2019, 39(11): 72-73. doi: 10.3969/j.issn.1674-1021.2019.11.020

Li J. Talking about the operation method of environmental monitoring work quality management system[J].Environmental Protection and Circular Economy, 2019, 39(11): 72-73. doi: 10.3969/j.issn.1674-1021.2019.11.020

[11]

Piekut A, Baranowska R, Marchwinska-Wyrwal E, et al. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-A case of the Silesia Region (Poland)[J].Environmental Monitoring and Assessment, 2018, 190(1): 25. doi: 10.1007/s10661-017-6413-5

[12]

邓述培, 范鹏飞, 唐玉霜, 等. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J]. 中国无机分析化学, 2019, 9(4): 12-15. doi: 10.3969/j.issn.2095-1035.2019.04.003

Deng S P, Fan P F, Tang Y S, et al. Determination of 9 kinds of soil pollution of heavy metals in samples by X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12-15. doi: 10.3969/j.issn.2095-1035.2019.04.003

[13]

毛雪飞, 刘霁欣, 钱永忠, 等. 土壤重金属快速检测技术研究进展[J]. 中国农业科学, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010

Mao X F, Liu J X, Qian Y Z, et al. Technical review of fast detection of heavy metals in soil[J].Scientia Agricultura Sinica, 2019, 52(24): 4555-4566. doi: 10.3864/j.issn.0578-1752.2019.24.010

[14]

夏新, 陈纯, 米方卓, 等. 原子荧光法测定土壤中砷的质量控制评价标准研究[J]. 中国环境监测, 2015, 31(3): 19-23. doi: 10.3969/j.issn.1002-6002.2015.03.004

Xia X, Chen C, Mi F Z, et al. The quality control index on atomic absorption spectrometry for the analysis of Zn in water[J].Environmental Monitoring in China, 2015, 31(3): 19-23. doi: 10.3969/j.issn.1002-6002.2015.03.004

[15]

田志仁, 姜晓旭, 蒋月, 等. 土壤中镉元素测定精密度评价标准研究[J]. 环境监控与预警, 2019, 11(2): 26-30. doi: 10.3969/j.issn.1674-6732.2019.02.005

Tian Z R, Jiang X X, Jiang Y, et al. A research of evaluation standards of precision control on the detection of Cd in soil[J].Environmental Monitoring and Forewarning, 2019, 11(2): 26-30. doi: 10.3969/j.issn.1674-6732.2019.02.005

[16]

张甘霖, 王秋兵, 张凤荣, 等. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 2013, 50(4): 826-834.

Zhang G L, Wang Q B, Zhang F R, et al. Critria for establishment of soil family and soil series in Chinese soil taxonomy[J]. Acta Pedologica Sinica, 2013, 50(4): 826-834.

[17]

芶凯平. 浅谈环境监测盲样考核方法[J]. 环境科学导刊, 2017, 36(Supplement 2): 203-204.

Gou K P. Talking about the evaluation method of blind sample of environmental monitoring[J]. Environmental Science Survey, 2017, 36(Supplement 2): 203-204.

[18]

王婷, 郭峰. 土壤例行监测样品采集的质量保证和质量控制探讨[J]. 安徽农学通报, 2016, 22(18): 79, 92.

Wang T, Guo F. Quality assurance and quality control of soil sample collecting in soil environmental quality monitoring[J]. Anhui Agricultural Science Bulletin, 2016, 22(18): 79, 92.

[19]

张雪梅, 罗小玲. 建设用地土壤环境调查监测外部质量控制措施浅析[J]. 广东化工, 2020, 47(15): 277, 279.

Zhang X M, Luo X L. Analysis of the external quality control measures for soil environmental monitoring of development land[J]. Guangdong Chemical Industry, 2020, 47(15): 277, 279.

[20]

刘琳娟, 黄娟, 张晔霞, 等. 建立土壤监测分析质量管理及评估体系的探讨[J]. 环境监控与预警, 2019, 11(3): 58-62. doi: 10.3969/j.issn.1674-6732.2019.03.013

Liu L J, Huang J, Zhang Y X, et al. Discussion on establishing quality management and evaluation system of soil monitoring and analysis[J].Environmental Monitoring and Forewarning, 2019, 11(3): 58-62. doi: 10.3969/j.issn.1674-6732.2019.03.013

[21]

杨琦. 浅谈土壤污染环境监测的质量控制和评价方法[J]. 南方农机, 2018, 49(21): 92. doi: 10.3969/j.issn.1672-3872.2018.21.071

Yang Q. Talking about the quality control and evaluation method of soil pollution environment monitoring[J].China Southern Agricultural Machinery, 2018, 49(21): 92. doi: 10.3969/j.issn.1672-3872.2018.21.071

[22]

田志仁, 封雪, 姜晓旭, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J]. 岩矿测试, 2019, 38(5): 479-488.

Tian Z R, Feng X, Jiang X X, et al. Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5): 479-488.

[23]

帅立, 袁卫峰, 巢楚越, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属比较研究[J]. 江西化工, 2020, 36(5): 38-39. doi: 10.3969/j.issn.1008-3103.2020.05.012

Shai L, Yuan W F, Chao C Y, et al. AAS/AFS and XRF are used to determine heavy metals in soil in ecological monitoring[J].Jiangxi Chemical Industry, 2020, 36(5): 38-39. doi: 10.3969/j.issn.1008-3103.2020.05.012

[24]

叶伟红, 洪正昉, 郑翔翔, 等. 土壤中7种重金属和砷测定的精密度控制指标研究[J]. 中国环境监测, 2020, 36(4): 115-122.

Ye W H, Hong Z F, Zheng X X, et al. Study on the indexes of precision control for the determination of 7 heavy metals and arsenic in soil[J]. Environmental Monitoring in China, 2020, 36(4): 115-122.

[25]

滕曼, 吴晓凤, 贾立明, 等. 我国环境监测实验室土壤铅检测能力比对分析[J]. 环境与健康杂志, 2018, 35(6): 547-548.

Teng M, Wu X F, Jia L M, et al. Comparative analysis of soil lead detection capability in environmental monitoring laboratories of China[J]. Journal of Environment and Health, 2018, 35(6): 547-548.

[26]

王宇游, 夏新, 米方卓, 等. 《土壤环境质量标准》中六种重金属测定精密度控制指标研究[J]. 土壤通报, 2014, 45(6): 1500-1504.

Wang Y Y, Xia X, Mi F Z, et al. Study on the indexes of precision quality control for 6 heavy metals in soil environmental quality standard[J]. Chinese Journal of Soil Science, 2014, 45(6): 1500-1504.

[27]

朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137.

Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. Environmental Monitoring in China, 2019, 35(6): 129-137.

[28]

张艾蕊, 王海, 王海峰, 等. 微波氧燃烧样品前处理法在元素分析中的应用[J]. 分析测试学报, 2016, 35(12): 1654-1660. doi: 10.3969/j.issn.1004-4957.2016.12.025

Zhang A R, Wang H, Wang H F, et al. Application of microwave-induced combustion as sample pretreatment method in elemental analysis[J].Journal of Instrumental Analysis, 2016, 35(12): 1654-1660. doi: 10.3969/j.issn.1004-4957.2016.12.025

[29]

彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386-1395.

Peng H L, Yang Z S, Zhao J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386-1395.

[30]

刀谞, 霍晓芹, 张霖琳, 等. 我国土壤中主要元素监测技术及难点[J]. 中国环境监测, 2018, 34(5): 12-21.

Dao X, Huo X Q, Zhang L L, et al. Overview of main soil element heavy metal monitoring technology and difficulties in China[J]. Environmental Monitoring in China, 2018, 34(5): 12-21.

[31]

刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677.

Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677.

[32]

王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76.

Wang N, Xu T M, Wei S, et al. Determination of are earth elements in ultra-fine-grained rock and soil samples by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76.

[33]

王文婷. 原子吸收法对全国土壤详查样品总铬的研究[J]. 山西冶金, 2019, 42(6): 59-60, 62.

Wang W T. Study on total chromium in soil samples from national soil survey by AAS[J]. Shanxi Metallurgy, 2019, 42(6): 59-60, 62.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[3]

肖晓辉, 黄晓刚, 陈振, 宋波. 中性浸出-硫氰酸汞-硫酸高铁铵分光光度法测定锌精矿中的氯量. 岩矿测试, 2008, 27(3): 227-229.

[4]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[5]

邢智, 潘淑春, 吴静, 张齐维, 陈芝琰, 戈学渝. 固体粉末稳态法发射光谱分析新型进样器的研制及应用. 岩矿测试, 2008, 27(3): 223-226.

[6]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[10]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[11]

孙青, 李松. 高压气相色谱法快速测定痕量长链烯酮. 岩矿测试, 2008, 27(1): 5-8.

[12]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[13]

田志仁, 封雪, 姜晓旭, 李宗超, 李妤, 夏新. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价. 岩矿测试, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

[14]

李迎春, 罗立强, 唐力君, 张宝科, 詹秀春, 王健, 李松. 小型气体质谱仪在中国大陆科学钻探钻井现场泥浆中气体的在线分析应用. 岩矿测试, 2008, 27(1): 1-4.

[15]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[16]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[17]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[18]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[19]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[20]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

计量
  • PDF下载量(7)
  • 文章访问量(2457)
  • HTML全文浏览量(722)
  • 被引次数(0)
目录

Figures And Tables

土壤中锌元素测定精密度评价标准建议值的探讨

李妤, 田志仁, 蒋月, 夏新