【引用本文】 邵坤, 赵改红, 赵朝辉, . 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究[J]. 岩矿测试, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017
SHAO Kun , ZHAO Gai-hong , ZHAO Chao-hui . Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017

腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究

中国地质科学院矿产综合利用研究所, 四川 成都 610041

收稿日期: 2019-01-25  修回日期: 2019-05-30 

基金项目: 四川省科技计划项目(2018JY0231);中国地质调查局地质调查项目(DD20189507)

作者简介: 邵坤,硕士,工程师,从事岩矿测试及环境化学研究。E-mail:shaokun101@163.com。。

Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier

Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China

Received Date: 2019-01-25
Revised Date: 2019-05-30

摘要:磁铁矿是一种绿色廉价的矿物材料,对水体中重金属离子具有良好的吸附性,但吸附容量低,选择性差,易团聚,通过改性可以克服该缺点并提高其吸附性能。本文以腐植酸为改性剂,采用常温水相反应制备了腐植酸改性磁铁矿吸附材料。通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)和X射线光电子能谱(XPS)表征研究其表面形貌和微观结构。采用静态平衡实验考察了pH、吸附时间等因素对铅、镉吸附性能的影响,探讨了吸附动力学规律,拟合了吸附等温线。结果表明:腐植酸上的羧基、羟基被成功地接枝到了磁铁矿表面。在室温下,溶液初始pH对Pb2+的吸附率几乎无影响,对Cd2+的影响较大,当pH=7时,Pb2+和Cd2+吸附率均达到了95%。对初始质量浓度为10mg/L的Pb2+、Cd2+最佳吸附平衡时间为360min,吸附过程符合准二级动力学方程。吸附等温线实验得到的竞争吸附顺序为Pb2+>Cd2+,由Langmuir等温吸附模型得到Pb2+、Cd2+饱和吸附容量分别为39.27mg/g、28.95mg/g,显著大于磁铁矿的饱和吸附容量,表明磁铁矿经腐植酸改性后增强了对水中铅镉的吸附能力。

关键词: 水样, , , 重金属, 吸附, 改性磁铁矿, 腐植酸, 傅里叶红外光谱, 扫描电镜, X射线光电子能谱

Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier

KEY WORDS: water samples, Pb, Cd, heavy metals, adsorption, modified magnetite, humic acid, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy

本文参考文献

[1]

Meneguin J G,Moisésb M P,Karchiyappan T,et al.Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions:Adsorption and thermodynamic modeling[J].Process Safety and Environmental Protection,2017,111:244-252.

[2]

刘金燕,刘立华,薛建荣,等.重金属废水吸附处理的研究进展[J].环境化学,2018,37(9):2016-2024.

Liu J Y,Liu L H,Xue J R,et al.Research progress on treatment of heavy metal wastewater by adsorption[J].Environmental Chemistry,2018,37(9):2016-2024.

[3]

Bhunia P,Chatterjee S,Rudra P,et al.Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater[J].Separation and Purification Technology,2018,193(20):202-213.

[4]

Tabesh S,Davar F,Loghman-Estarki M R.Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions[J].Journal of Alloys and Compounds,2018,730(5):441-449.

[5]

Lu M M,Zhang Y B,Zhou Y L,et al.Adsorption-desorption characteristics and mechanisms of Pb(Ⅱ) on natural vanadium,titanium-bearing magnetite-humic acid magnetic adsorbent[J].Powder Technology,2019,344(15):947-958.

[6]

Karimpour M,Ashrafia S D,Taghavi K.Adsorption of cadmium and lead onto live and dead cell mass of pseudomonas aeruginosa:A dataset[J].Data in Brief,2018,18:1185-1192.

[7]

张连科,王洋,王维大,等.磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J].环境科学学报,2018,38(11):4360-4370.

Zhang L K,Wang Y,Wang W D,et al.Preparation of magnetic hydroxyapatite/biochar composite and its adsorption behavior of Pb2+ and recycling performance[J].Acta Scientiae Circumstantiae,2018,38(11):4360-4370.

[8]

鲁安怀.矿物学环境属性研究新进展[J].岩石矿物学杂志,2015,34(6):795-802.

Lu A H.The new advance of mineralogical environmental attributes[J].Acta Petrologica Et Mineralogica,2015,34(6):795-802.

[9]

Chen L Y,Wu P X,Chen M Q,et al.Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead[J].Applied Clay Science,2018,159:74-82.

[10]

王喆,谭科艳,梁明会,等.天然丝光沸石表面重构改性及其在水中去除重金属的应用[J].岩矿测试,2018,37(6):678-686.

Wang Z,Tan K Y,Liang M H,et al.Surface modification of natural mordenite and its application in removal of heavy metals from aqueous solution[J].Rock and Mineral Analysis,2018,37(6):678-686.

[11]

Peng C,Chai L Y,Song Y X,et al.Thermodynamics,kinetics and mechanism analysis of Cu(Ⅱ) adsorption by in-situ synthesized struvite crystal[J].Journal of Central South University,2018,25(5):1033-1042.

[12]

邵金秋,温其谦,阎秀兰,等.天然含铁矿物对砷的吸附效果及机制[J].环境科学,2019, DOI:10.13227/j.hjkx.201903023.

Shao J Q,Wen Q Q,Yan X L,et al.Comparison of adsorption and mechanism of arsenic by natural iron-containing minerals[J].Environmental Science,2019,DOI:10.13227/j.hjkx.201903023.

[13]

崔晋艳,钱天伟,丁庆伟,等.纳米级天然黄铁矿去除水中Cr6+,Cd2+和Pb2+[J].环境工程学报,2016,10(12):7103-7108.

Cui J Y,Qian T W,Ding Q W,et al.Adsorption of Cr6+,Cd2+ and Pb2+ from aqueous solutions by nanoscale pyrite[J].Chinese Journal of Environmental Engineering,2016,10(12):7103-7108.

[14]

Ramirez-Muñiz K,Perez-Rodriguez F,Rangel-Mendez R.Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J].Journal of Molecular Liquids,2018,265(15):253-260.

[15]

吴昆明,郭华明,魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J].岩矿测试,2017,36(6):624-632.

Wu K M,Guo H M,Wei C J.Adsorption characteristics of arsenic in water by modified magnetite[J].Rock and Mineral Analysis,2017,36(6):624-632.

[16]

赵谨,鲁安怀,姜浩,等.天然磁铁矿处理含Hg(Ⅱ)废水实验研究[J].岩石矿物学杂志,2001,20(4):499-554.

Zhao J,Lu A H,Jiang H,et al.The disposal of Hg(Ⅱ) bearing wastewater by natural magnetite[J].Acta Petrologica Et Mineralogica,2001,20(4):499-554.

[17]

吴昆明,郭华明,魏朝俊.天然磁铁矿化学改性及其在水体除砷中的应用[J].岩矿测试,2017, 36(1):32-39.

Wu K M,Guo H M,Wei C J.Chemical modification of natural magnetite and its application in arsenic removal from a water environment[J].Rock and Mineral Analysis,2017,36(1):32-39.

[18]

聂果,王永杰,李军.环境矿物材料吸附重金属的有机改性研究[J].环境科技,2015,28(2):76-80.

Nie G,Wang Y J, Li J.The organic modification research of environmental mineral material in adsorption of heavy metal[J].Environmental Science and Technology,2015,28(2):76-80.

[19]

Zhao J J,Niu Y Z,Ren B,et al.Synthesis of schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J].Chemical Engineering Journal,2018,347(1):574-584.

[20]

Hu D,Wan X D,Li X H,et al.Synthesis of water-dispersible poly-l-lysine-functionalized magnetic Fe3O4-(GO-MWCNTs) nanocomposite hybrid with a large surface area for high-efficiency removal of tartrazine and Pb(Ⅱ)[J].International Journal of Biological Macromolecules,2017,105(3):1611-1621.

[21]

陆中桂,黄占斌,李昂,等.腐植酸对重金属铅镉的吸附特征[J].环境科学学报,2018,38(9):3721-3729.

Lu Z G,Huang Z B,Li A,et al.The adsorption behavior of lead and cadmium by humic acid[J].Acta Scientiae Circumstantiae,2018,38(9):3721-3729.

[22]

Zhang W,Zheng J,Zheng P,et al.The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface[J].Journal of Soils and Sediments,2015,15(7):1463-1472.

[23]

张彩凤,李凌燕.腐植酸对铜、锌、钼和锰的吸附研究[J].腐植酸,2009,6(1):11-15.

Zhang C F,Li L Y.Study on adsorption of Cu,Zn,Mo and Mn by humic acid[J].Humic Acid,2009,6(1):11-15.

[24]

朱丽珺,张金池,宰德欣,等.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报,2007,31(4):73-76.

Zhu L J,Zhang J C,Zai D X,et al.Study on the adsorption of heavy metal Cu2+,Pb2+ by humus[J].Journal of Nanjing Forestry University,2007,31(4):73-76.

[25]

Khaleel A I,Raoof A,Tuzen M.Solid phase extraction containing multi-walled carbon nanotubes and eggshell membrane as adsorbent for ICP-OES determination of Pb(Ⅱ) and Cd(Ⅱ) in various water and orange fruit (peel and pulp) samples[J].Atomic Spectroscopy,2018,39(6):235-241.

[26]

汤智,赵晓丽,吴丰昌,等.不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J].环境化学,2015,34(8):1520-1528.

Tang Z,Zhao X L,Wu F C,et al.The interaction between Fe3O4 nanoparticle and different source humic acid,and the influence on nanoparticle suspension[J].Environmental Chemistry,2015,34(8):1520-1528.

[27]

张娟,邓慧萍,薮谷智規,等.新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除[J].环境科学,2011,32(11):3348-3356.

Zhang J,Deng H P,Yabutani T,et al.Study of the removal of Pb2+ from aqueous solution by poly-γ-glutamic acid coated magnetic nanoparticles[J].Environmental Science,2011,32(11):3348-3356.

[28]

梁咏梅,刘伟,马军.pH和腐植酸对高铁酸盐去除水中铅、镉的影响[J].哈尔滨工业大学学报,2003,35(5):545-548.

Liang Y M,Liu W,Ma J.Effect of pH and humic acid on removal of lead and cadmium by combined ferrate pretreatment and alum coagulation[J].Journal of Harbin Institute of Technology,2003,35(5):545-548.

[29]

邵坤,赵改红,李刚.改性磁铁矿对矿区土壤中镉的吸附性能及机理[J].矿产保护与利用,2019,39(2):89-94.

Shao K,Zhao G H,Li G.Adsorption properties and mechanism of modified magnetite for cadmium removal from mined soil[J].Conservation and Utilization of Mineral Resources,2019,39(2):89-94.

[30]

Li Y H,Ding J,Luan Z,et al.Competitive adsorption of Pb2+,Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon,2003,41(14):2787-2792.

[31]

姜彬慧,丽丽,赵研,等.pH值对天然磁铁矿吸附水中Pb2+的影响及吸附机制研究[J].功能材料,2013,23(44):3392-3396.

Jiang B H,Li L,Zhao Y,et al.Adsorption mechanism of lead(Ⅱ) ions on natural magnetite from aqueous solution and effect of pH value[J].Functional Materials,2013,23(44):3392-3396.

[32]

罗文倩,魏世强.镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J].农业环境科学学报,2009,28(5):897-902.

Luo W Q,Wei S Q.Adsorption and desorption behaviors of cadmium on/from goethite and its compound colloid with humic acids[J].Journal of Agro-Environment Science,2009,28(5):897-902.

[33]

Wu P X,Zhang Q,Dai Y P,et al.Adsorption of Cu(Ⅱ),Cd(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions on humic acid modified Ca-montmorillonite[J].Geoderma,2011,164(3-4):215-219.

[34]

周挺进,杨丽珍,徐焕辉,等.累托石/腐植酸微球对水中Cd2+的吸附及动力学研究[J].环境科学与技术,2010,33(10):53-56.

Zhou T J,Yang L Z,Xu H H,et al.Kinetics study on adsorption of Cd2+ in water on rectorite/humic acid microspheres[J].Environmental Science and Technology,2010,33(10):53-56.

[35]

张如玉,刘海波,邹雪华,等.小麦秸秆驱动菱铁矿热解制备磁性生物质碳及其吸附Cd2+活性[J].环境科学,2017,38(8):3519-3528.

Zhang R Y,Liu H B,Zou X H,et al.Preparation of magnetic biomass carbon by thermal decomposition of siderite driven by wheat straw and its adsorption on cadmium[J].Environment Science,2017,38(8):3519-3528.

[36]

相似文献(共20条)

[1]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[2]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁. 岩矿测试, 2014, 33(4): 545-550.

[7]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[8]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[9]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[10]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[11]

王喆, 谭科艳, 梁明会, 蔡敬怡, 侯士田, 王悦, 江鹏. 天然丝光沸石表面重构改性及其在水中去除重金属的应用. 岩矿测试, 2018, 37(6): 678-686. doi: 10.15898/j.cnki.11-2131/td.201802110018

[12]

宫辉力, 李玉萍, 刘晓端. 土壤中铅铜锌镉的吸附特性. 岩矿测试, 2007, 26(6): 455-459.

[13]

林章金, 曾宇崇. 原子荧光光谱法测定芦荟中铅和镉. 岩矿测试, 2005, (2): 157-158.

[14]

马龙, 陈新民. 快速标准加入无火焰原子吸收光谱法测定人血和动物血中铅和镉. 岩矿测试, 2008, 27(5): 文后II-文后II.

[15]

吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147

[16]

甘树才, 陈博. GDX—502树脂吸附分离富集—微分电位溶出测定水样中痕量酚. 岩矿测试, 1999, (1): 34-37.

[17]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[18]

刘素芳, 韩志文, 岑况, 王亚平, 潘小菲. 汞和镉在土壤中的吸附和运移研究进展. 岩矿测试, 2003, (4): 277-283.

[19]

张宁, 郭秀平, 李星, 申玉民, 姜云军, 安彩秀, 薛志坤. 巯基棉分离富集ICP-AES法测定高盐冶金废水中痕量铅镉铜银. 岩矿测试, 2014, 33(4): 551-555.

[20]

翟磊, 詹秀春, 樊兴涛, 温宏利, 焦距, 刘雷雷. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究. 岩矿测试, 2015, 34(1): 118-128. doi: 10.15898/j.cnki.11-2131/td.2015.01.016

计量
  • PDF下载量(6)
  • 文章访问量(26)
  • 被引次数(0)
目录

Figures And Tables

腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究

邵坤, 赵改红, 赵朝辉