【引用本文】 伍月, 迟广成, 刘欣, . X射线粉晶衍射法在变粒岩鉴定与分类中的应用[J]. 岩矿测试, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117
WU Yue, CHI Guang-cheng, LIU Xin. Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554. doi: 10.15898/j.cnki.11-2131/td.201908050117

X射线粉晶衍射法在变粒岩鉴定与分类中的应用

中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110032

收稿日期: 2019-08-05  修回日期: 2019-12-12  接受日期: 2020-04-23

基金项目: 国土资源部公益专项“变质岩岩石矿物鉴定检测技术方法研究”(201011029-3)

作者简介: 伍月, 工程师, 从事岩矿测试工作。E-mail:wuyuemay005@163.com

通信作者: 迟广成, 教授级高级工程师, 从事岩矿测试工作。E-mail:chiguangcheng@126.com

Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite

Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110032, China

Corresponding author: CHI Guang-cheng, chiguangcheng@126.com

Received Date: 2019-08-05
Revised Date: 2019-12-12
Accepted Date: 2020-04-23

摘要:变粒岩的鉴定通常以显微镜鉴定技术为主,但在显微镜下区分颗粒细小的长石、石英及绿泥石、蒙脱石、云母等层状硅酸盐矿物十分困难,仅通过显微鉴定技术对变粒岩进行定名可能产生较大误差,这对地质填图和原岩恢复工作会造成一些偏差,导致得出错误的地质结论。随着X射线衍射分析技术的发展,该技术已广泛应用于矿物学和岩石学的研究,本研究将结合X射线粉晶衍射技术,对显微镜下难以区分的细小矿物进行鉴定。共选用23件变粒岩样品,利用X射线粉晶衍射分析和显微镜岩石薄片鉴定技术,对变粒岩矿物组分进行检测,用X射线粉晶衍射矿物半定量分析结果验证岩石薄片鉴定结果准确性。显微镜岩石薄片鉴定结果与X射线粉晶衍射物相分析结果对比显示,10件样品定名一致,其余13件样品详细定名有差异。通过分析产生差异的原因,可以认为显微镜岩石薄片鉴定优势在于能确定岩石结构和构造,以及常见矿物组分;X射线粉晶衍射法的优势在于能检测出显微镜下较难区分的细小石英和长石颗粒的相对含量,并能检测出颗粒较小的绿泥石、蒙脱石及云母等层状硅酸盐矿物,该方法对含量较少、颗粒较细的矿物检测效果较好。实验证明将显微岩石薄片鉴定技术和X射线粉晶衍射技术相结合,才能更准确对变粒岩进行定名,为地学研究提供更符合客观实际的技术数据和分析结论。

关键词: 变粒岩, 岩石薄片鉴定, X射线粉晶衍射法, 分类定名

要点

(1)显微鉴定法能确定岩石结构和构造及常见矿物组分,但区分颗粒细小的矿物十分困难。

(2)X射线粉晶衍射法能检测出镜下难以区分的细小矿物以及层状硅酸盐矿物。

(3)将显微鉴定法与X射线粉晶衍射法相结合,对变粒岩进行准

Application of X-ray Powder Diffraction Method in Identification and Classification of Leptite

ABSTRACT

BACKGROUND:

The identification of leptite is usually based on microscopic identification technology, but it is very difficult to distinguish tiny feldspar, quartz, and layered silicate minerals such as chlorite, montmorillonite and mica using a microscope. There could be a large error in the naming of leptite by microscopic identification methods, which will cause errors in geological mapping and original rock recovery, leading to incorrect geological conclusions. The development of X-ray powder diffraction analysis technology has led to its wide use in the study of mineralogy and petrology.

OBJECTIVES:

To identify tiny minerals that are difficult to distinguish under the microscope by using X-ray powder diffraction technology.

METHODS:

A total of 23 leptite samples were selected. The mineral composition of leptite was detected by X-ray powder diffraction analysis and microscopic rock thin section identification technology. Semi-quantitative X-ray powder diffraction was used to verify the accuracy of the rock slice identification results.

RESULTS:

The comparison between the identification results of the microscopic rock slices and the X-ray powder diffraction phase analysis results showed that 10 out of 23 samples had the same name. Analyzing the reasons for the difference, it can be found that the advantage of microscopic rock identification was that it can be used to determine rock texture and structure, as well as common mineral components. The advantage of the X-ray powder diffraction method was that it can be used to detect the relative content of tiny quartz and feldspar particles that were difficult to distinguish under the microscope, and can detect tiny layered silicate minerals such as chlorite, montmorillonite and mica, which was effective for detecting minerals with less content and finer particles.

CONCLUSIONS:

Only by combining the microscopic rock thin identification technology and the X-ray powder diffraction technology can the leptite be named and classified more accurately. The combination of two techniques provides more objective technical data and analytical conclusions for geoscience research.

KEY WORDS: leptite, rock flake microscopic identification, X-ray powder diffraction, classification

Highlights

(1) The microscopic identification method can determine rock texture, structure and common minerals, but it is very difficult to distinguish tiny minerals.

(2) X-ray powder diffraction can detect tiny minerals and layered silicate minerals that are difficult to identify using a microscope.

(3) Combined microscopic identification and X-ray powder diffraction methods can be used to name and classify leptite.

本文参考文献

[1]

何丽, 徐翠, 修迪, 等. 将X粉晶射线法、电子探针分析与岩矿鉴定法应用于矿物分析[J]. 中国锰业, 2016, 34(3): 159-163.

He L, Xu C, Xiu D, et al. Discussin on how to apply the X-ray powder diffraction, the electron microprobe analysis and the rock ore appraisal to the rock and mineral analysis reasonably[J]. China's Manganese Industry, 2016, 34(3): 159-163.

[2]

陈爱清, 江向峰, 李国武, 等. 微量样品的X射线粉晶衍射分析研究[J]. 矿物学报, 2017, 37(1/2): 1-6.

Chen A Q, Jiang X F, Li G W, et al. A study on X-ray powder diffraction of micro sample[J]. Acta Mineralogica Sinica, 2017, 37(1/2): 1-6.

[3]

沈春玉, 储刚. X射线衍射定量相分析新方法[J]. 分析测试学报, 2003, 22(6): 80-82.

Shen C Y, Chu G. A new method for quantitative X-ray diffraction phase analysis[J]. Journal of Instrumental Analysis, 2003, 22(6): 80-82.

[4]

孙以谏. X射线晶体学对造岩矿物研究的应用[J]. 资源调查与环境, 2002, 23(3): 172-178.

Sun Y J. Application of X-ray crystallography on studying rock-forming mineral[J]. Resources Survey & Environment, 2002, 23(3): 172-178.

[5]

李杨. X射线粉晶衍射法结合显微镜薄片观测运用于具隐晶质岩石的鉴定[J]. 中国金属通报, 2018, (2): 246-247.

Li Y. X-ray powder crystal diffraction method combined with microscopy observation for identification of cryptocrystalline rocks[J]. China Metal Bulletin, 2018, (2): 246-247.

[6]

何丽, 范超, 田颖, 等. X射线粉晶衍射法结合运用于岩矿鉴定的薄弱部分——隐晶质岩石[J]. 中国锰业, 2017, 35(6): 132-135.

He L, Fan C, Tian Y, et al. X-ray powder diffraction to vulnerable part of mineral and rock identification-Cryptocrystalline rocks[J]. China's Manganese Industry, 2017, 35(6): 132-135.

[7]

胡耀东. 光学显微镜鉴定、扫描电镜(能谱)及微区衍射在微量矿物检测中的联合应用[J]. 云南冶金, 2015, 44(1): 63-66.

Hu Y D. The combied application of optical microscope indentification, scanning electron microscope (energy spectrum) and micro mineral detection[J]. Yunnan Metallurgy, 2015, 44(1): 63-66.

[8]

宋颖. 岩石矿物鉴定方法综述[J]. 化工管理, 2018, 23(8): 237-238.

Song Y. Summary of rock mineral identification methods[J]. Chemical Enterprise Management, 2018, 23(8): 237-238.

[9]

廖冰冰. 岩矿鉴定工作现状及其发展趋势分析[J]. 资源信息与工程, 2018, 33(2): 27-28.

Liao B B. Analysis of the status and development trend of rock and mineral identification[J]. Resource Information and Engineering, 2018, 33(2): 27-28.

[10]

殷悦. 浅谈岩石矿物鉴定的方法与应用[J]. 化工设计通讯, 2017, 43(6): 136.

Yin Y. Analysis on the method and application of rock mineral indentification[J]. Chemical Engineering Design Communications, 2017, 43(6): 136.

[11]

游振东. 变质岩电子岩相学初探[J]. 地质科技情报, 1984, (3): 11-17.

You Z D. Preliminary study on electronic petrography of metamorphic rocks[J]. Geological Science and Technology Information, 1984, (3): 11-17.

[12]

陈曼云,金巍,郑常青. 变质岩鉴定手册[M] . 北京: 地质出版社, 2009: 69-71.

Chen M Y,Jin W,Zheng C Q. Metamorphic rock identification manual[M] . Beijing: Geological Publishing House, 2009: 69-71.
[13]

He B B. Introduction to two-dimensional X-ray diffraction[J].Powder Diffraction, 2003, 18(2): 71-80. doi: 10.1154/1.1577355

[14]

廖立兵,李国武. X射线衍射方法与应用[M] . 北京: 地质出版社, 2008: 134-136.

Liao L B,Li G W. X-ray diffraction methods and their application[M] . Beijng: Geological Publishing House, 2008: 134-136.
[15]

马礼敦. X射线粉晶衍射的新起点——Rietveld全谱拟合[J]. 物理学进展, 1996, 16(2): 251-256.

Ma L D. The new starting point of X-ray powder diffraction-Rietveld whole pattern fitting[J]. Progress in Physics, 1996, 16(2): 251-256.

[16]

伍月, 刘欣, 张波, 等. X射线粉晶衍射基体清洗法在矿物定量分析中的应用[J]. 地质与资源, 2017, 26(3): 323-328.

Wu Y, Liu X, Zhang B, et al. The application and research of X-ray powder diffraction matrix flushing method in quantitative analysis[J]. Geology and Resources, 2017, 26(3): 323-328.

[17]

林伟伟, 宋友佳. 沉积物中X射线衍射物相定量分析中的两种方法对比研究[J]. 地球环境学报, 2017, 8(1): 83-86.

Lin W W, Song Y J. A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments[J]. Journal of Earth Enviroment, 2017, 8(1): 83-86.

[18]

邱贤荣, 齐砚勇, 唐志强, 等. 全谱拟合定量分析石灰石[J]. 分析科学学报, 2013, 29(1): 146-148.

Qiu X R, Qi Y Y, Tang Z Q, et al. Rietveld quantitative analysis of limestone[J]. Journal of Analytical Science, 2013, 29(1): 146-148.

[19]

冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667.

Ran J, Guo C F, Du G, et al. Quantitative analysis of mineral composition of kyanite by X-ray diffraction with Rietveld refinement method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667.

[20]

Gualtieri M L, Romagnoli M, Miselli P, et al. Full quantitative phase analysis of hydrated lime using the Rietveld method[J]. Cement & Concrete Research, 2012, 42(9): 1273-1279.

[21]

Woodruff L, Cannon W F, Smith D B, et al. The distribution of selected elements and minerals in soil of the conterminous United States[J].Journal of Geochemical Exploration, 2015, 154: 49-60. doi: 10.1016/j.gexplo.2015.01.006

[22]

Santini T C. Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings)[J].International Journal of Mineral Processing, 2015, 139: 1-10. doi: 10.1016/j.minpro.2015.04.004

[23]

许乃岑, 沈加林, 张静, 等. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J]. 岩矿测试, 2015, 34(1): 75-81.

Xu N C, Shen J L, Zhang J, et al. Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81.

[24]

万洪波, 廖立兵. 膨润土中蒙脱石物相的定量分析[J]. 硅酸盐学报, 2009, 37(12): 2055-2060.

Wan H B, Liao L B. Quantitative phase analysis of montmorillonite in bentonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2055-2060.

[25]

邓苗, 汪灵, 林金辉, 等. 川西微晶白云母的X射线粉晶衍射分析[J]. 矿物学报, 2006, 26(2): 131-136.

Deng M, Wang L, Lin J H, et al. Characteristics of micro-crystal muscovite in west Sichuan, China:An X-ray powder diffraction analysis[J]. Acta Mineralogical Sinica, 2006, 26(2): 131-136.

[26]

迟广成, 肖刚, 伍月, 等. X射线粉晶衍射仪在大理岩鉴定与分类中的应用[J]. 岩矿测试, 2014, 33(5): 698-705.

Chi G C, Xiao G, Wu Y, et al. The application of X-ray powder diffraction to marble definition and classification[J]. Rock and Mineral Analysis, 2014, 33(5): 698-705.

[27]

迟广成, 肖刚, 汪寅夫, 等. 铁矿石矿物组分的X射线粉晶衍射半定量分析[J]. 冶金分析, 2015, 35(1): 38-44.

Chi G C, Xiao G, Wang Y F, et al. Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J]. Metallurgical Analysis, 2015, 35(1): 38-44.

[28]

郝原芳, 赵爱林. 方解石、白云石定量分析——X射线衍射法快速分析[J]. 有色矿冶, 2005, 21(5): 58-60.

Hao Y F, Zhao A L. A simple method of quantitative analysis for calcite and dolomite in rock by X-ray diffraction[J]. Non-Ferrous Mining and Metallurgy, 2005, 21(5): 58-60.

[29]

杜谷, 王坤阳, 冉敬, 等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(5): 625-633.

Du G, Wang K Y, Ran J, et al. Application of IR/SEM and other modern instruments for mineral identification[J]. Rock and Mineral Analysis, 2014, 33(5): 625-633.

相似文献(共20条)

[1]

迟广成, 肖刚, 伍月, 陈英丽, 王海娇, 胡建飞. X射线粉晶衍射仪在大理岩鉴定与分类中的应用. 岩矿测试, 2014, 33(5): 698-705.

[2]

迟广成, 宋丽华, 王娜, 崔德松, 周国兴. X射线粉晶衍射仪在山东蒙阴金伯利岩蚀变矿物鉴定中的应用. 岩矿测试, 2010, 29(4): 475-477.

[3]

兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009

[4]

于艳, 温海成, 康延国, 迟广成. X射线粉晶衍射法在萤石矿药鉴定与质量评价中的应用. 岩矿测试, 2007, 26(6): 495-496499.

[5]

许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

[6]

孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.201709050141

[7]

李功顺. X射线粉晶衍射法分析磷化膜不同成分衍射强度比. 岩矿测试, 2008, 27(5): 392-394.

[8]

迟广成, 王娜, 吴桐. X射线粉晶衍射仪鉴别鸡血石. 岩矿测试, 2010, 29(1): 71-73.

[9]

薛 雍, 江向峰, 钟玉锋. 标准曲线法X射线粉晶衍射直接分析滑石中微量石棉. 岩矿测试, 2010, 29(3): 322-324.

[10]

迟广成, 张泉, 赵爱林, 钟辉, 胡建飞. X射线粉晶衍射仪定量测量海泡石矿样的实验条件. 岩矿测试, 2012, 31(2): 282-286.

[11]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[12]

严俊, 胡仙超, 方飚, 陶金波, 彭秋瑾, 张俭. 应用XRF-SEM-XRD-FTIR等分析测试技术研究丽水蓝色类欧泊(蛋白石)的矿物学与光学特征. 岩矿测试, 2014, 33(6): 795-801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006

[13]

钟辉, 陈英丽. 黝帘石质玉的宝石学特征. 岩矿测试, 2007, 26(6): 465-468.

[14]

戴慧, 蒋小平, 张敏, 贾云波, 李宁, 俞雷. 一种罕见的红宝石与蓝晶石共生玉石. 岩矿测试, 2010, 29(4): 478-480.

[15]

严俊, 刘晓波, 王巨安, 方飚, 刘培钧, 杨彬彬. 应用FTIR-XRD-XRF分析测试技术研究新型仿制绿松石的矿物学特征. 岩矿测试, 2015, 34(5): 544-549. doi: 10.15898/j.cnki.11-2131/td.2015.05.008

[16]

庞小丽, 刘晓晨, 薛雍, 江向锋, 江超华. 粉晶X射线衍射法在岩石学和矿物学研究中的应用. 岩矿测试, 2009, 28(5): 452-456.

[17]

迟广成, 李俊杰, 钟辉, 温海成, 王娜. X射线粉晶衍射法分析磷化膜不同成分衍射强度比. 岩矿测试, 2008, 27(5): -.

[18]

迟广成, 伍月, 王海娇, 陈英丽, 王大千. X射线荧光光谱分析技术在大理岩鉴定与分类中的应用. 岩矿测试, 2018, 37(1): 43-49. doi: 10.15898/j.cnki.11-2131/td.201611300176

[19]

迟广成, 宋丽华, 赵爱林. X射线粉晶衍射仪分析磷化膜组成. 岩矿测试, 2007, 26(2): 163-164.

[20]

秦淑英. 新疆磁海铁矿床中辉石的研究与单斜辉石分类定名的多元三角图解法. 岩矿测试, 1983, (4): 272-281.

计量
  • PDF下载量(8)
  • 文章访问量(180)
  • HTML全文浏览量(33)
  • 被引次数(0)
目录

Figures And Tables

X射线粉晶衍射法在变粒岩鉴定与分类中的应用

伍月, 迟广成, 刘欣