【引用本文】 乔宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128
QIAO Ning-qiang, XUE Zhi-wei, WANG Gang-feng, et al. Determination of Mercury and Arsenic in Oil-bearing Core by Soxhelt Extraction-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467. doi: 10.15898/j.cnki.11-2131/td.201812030128

索氏提取-原子荧光光谱法测定含油岩心中的汞和砷

核工业二〇三研究所, 陕西 咸阳 712000

收稿日期: 2018-12-03  修回日期: 2019-03-08  接受日期: 2019-04-09

基金项目: 陕西省科技创新基地"岩石矿物、土壤和水体公共检测平台"项目(2017KTPT-29)

作者简介: 乔宁强, 工程师, 主要从事化学分析相关的测试和研究工作。E-mail:928937501@qq.com

Determination of Mercury and Arsenic in Oil-bearing Core by Soxhelt Extraction-Atomic Fluorescence Spectrometry

No. 203 Research Institute, China National Nuclear Corporation, Xianyang 712000, China

Received Date: 2018-12-03
Revised Date: 2019-03-08
Accepted Date: 2019-04-09

摘要:原油对测定含油岩心中的汞和砷有很大影响,目前去除原油等有机物的方法主要有高温烧制、强酸高温氧化等,要求反应温度较高,会造成汞和砷的损失而使测定结果偏低。本文采用索氏提取法,以氯仿作为提取剂在75℃下低温提取分离岩心中的原油,再用50%的王水溶解剩余样品,原子荧光光谱法测定汞和砷的含量。该方法对汞和砷的检出限分别为0.003mg/kg和0.10mg/kg,相对标准偏差分别为7.3%和5.1%,加标回收率均大于92.5%。与传统方法相比较,该方法避免了由于原油的疏水性造成样品与王水接触不充分、样品分解不完全和反应温度过高导致汞元素损失的问题,测定汞的相对标准偏差由33.0%降低至7.3%,测定砷的相对标准偏差由25.0%提高至5.1%,为含油岩心中其他元素的检测提供了借鉴。

关键词: 含油岩心, , , 索氏提取, 王水, 原子荧光光谱法

要点

(1) 在测定含油岩心中的汞和砷之前通过索氏提取法将原油分离。

(2) 原油被提取后样品可以更充分地与酸接触,其中的汞和砷被更加充分地溶解。

(3) 提取方法操作温度低,不会造成汞和砷的挥发。

(4) 通过原油的提取分离,方法的准确度和精密度得到很大提高。

Determination of Mercury and Arsenic in Oil-bearing Core by Soxhelt Extraction-Atomic Fluorescence Spectrometry

ABSTRACT

BACKGROUND:

Crude oil had a great influence on the determination of mercury and arsenic in oil-bearing cores by atomic fluorescence spectrometry. At present, the main methods of removing organic matter such as crude oil are high-temperature firing and high-temperature oxidation with strong acid. In these methods, high reaction temperature will cause loss of mercury and arsenic, resulting in lower results.

OBJECTIVES:

To develop a separation method with low operating temperature.

METHODS:

Mercury and arsenic in oil-bearing cores were determined by atomic fluorescence spectrometry with Soxhlet extraction at a low temperature for this method of 75℃ and the remaining part was decomposed by 50% aqua regia.

RESULTS:

The detection limits were 0.003mg/kg and 0.10mg/kg for mercury and arsenic, respectively. The relative standard deviations were 7.3% and 5.1%, respectively. The relative standard deviation of mercury decreased from 33.0% to 7.3%, and the relative standard deviation of arsenic decreased from 25.0% to 5.1%. The recoveries of standard addition were greater than 92.5%.

CONCLUSIONS:

Compared with traditional methods, this method avoided the problems of insufficient contact between samples and aqua regia due to the hydrophobicity of crude oil, incomplete decomposition of samples and mercury loss due to excessive reaction temperature. The proposed method provides a reference for the determination of other elements in oil-bearing cores.

KEY WORDS: oil-bearing core, Hg, As, Soxhelt extraction, aqua regia, atomic fluorescence spectrometry

HIGHLIGHTS

(1) Crude oil was separated by Soxhlet extraction before the determination of Hg and As in oil-bearing cores.

(2) Post-extraction samples can be fully exposed to acid, resulting in complete dissolution of Hg and As.

(3) Volatization of Hg and As did not occur, even though the extraction method was operated at a low temperature.

(4) A significant improvement of method accuracy and precision through the extraction and separation of crude oil.

本文参考文献

[1]

卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444.

Lu S F, Li J Q, Zhang P F, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exporation and Development, 2018, 45(3): 436-444.

[2]

阮东亮, 盘思伟, 韦正乐, 等. 砷对商业V2O5-WO3/TiO2催化剂脱硝性能的影响[J]. 化工进展, 2014, 33(4): 925-929.

Ruan D L, Pan S W, Wei Z L, et al. Effect of arsenic on de-NO efficiency over commercial V2O5-WO3/TiO2 catalyst[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 925-929.

[3]

周曙光, 周克法, 王金林, 等. 基于晕状特征提取的化探异常信息识别及其在成矿预测中的应用[J]. 干旱区地理, 2015, 38(7): 763-769.

Zhou S G, Zhou K F, Wang J L, et al. Identifying of geochemical anomalies according to the Halo pattern of trace elements for mineral exploration[J]. Arid Land Geography, 2015, 38(7): 763-769.

[4]

尚玉俊, 王秀莉, 宋丹丹, 等. 萃取分离-碘量自动电位滴定法测定三氧化二锑中砷[J]. 冶金分析, 2016, 36(3): 31-34.

Shang Y J, Wang X L, Song D D, et al. Determination of arsenic in antimony trioxide by automatic potentiometric-iodometry with extraction separation[J]. Metallurgical Analysis, 2016, 36(3): 31-34.

[5]

孙蕾, 郭金喜. LC-AFS法测定新疆阿勒泰狗鱼中的无机汞、甲基汞、乙基汞[J]. 食品工业, 2018, 39(3): 325-327.

Sun L, Guo J X. Determination of inorganic mercury, methylmercury, ethylmercury in Xinjiang Aletai Pike by LC-AFS[J]. The Food Industry, 2018, 39(3): 325-327.

[6]

陕红, 袁志华, 刘丹丹, 等. HPLC-ICP-MS法测定农业废水中有机砷与无机砷的方法研究[J]. 农业资源与环境学报, 2014, 31(2): 197-201.

Shan H, Yuan Z H, Liu D D, et al. Analysis of organic and inorganic arsenic in waste water of agricultural environment by high performance liquid chromatography and inductively coupled plasma mass spectrometry[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 197-201.

[7]

黄会秋, 黄莉来, 夏坪, 等. 水相衍生-气相色谱-质谱法同时测定水产品中甲基汞和无机砷[J]. 色谱, 2016, 34(9): 918-924.

Huang H Q, Huang L L, Xia P, et al. Simultaneous determination of methylmercury and inorganic arsenics in aquatic products by gas chromatography-mass spectrometry with aqueous derivatization[J]. Chinese Journal of Chromatography, 2016, 34(9): 918-924.

[8]

杜米芳, 聂富强, 杜丽丽, 等. 电感耦合等离子体原子发射光谱法测定船用钢中砷锡锑[J]. 冶金分析, 2017, 37(2): 70-75.

Du M F, Nie F Q, Du L L, et al. Determination of arsenic, tin and antimony in steel for ship by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(2): 70-75.

[9]

杨理勤, 陈占生, 谢璐, 等. 卡林型金矿金砷成分分析标准物质研制[J]. 岩矿测试, 2018, 37(2): 209-216.

Yang L Q, Chen Z S, Xie L, et al. Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin-type gold deposits[J]. Rock and Mineral Analysis, 2018, 37(2): 209-216.

[10]

苟体忠, 张文华, 王艳, 等. 微波消解-氢化物发生-冷原子荧光光谱法快速测定水系沉积物中的总汞[J]. 分析试验室, 2015, 34(12): 1457-1459.

Gou T Z, Zhang W H, Wang Y, et al. Rapid determination of total mercury contents in aquo-system sediment by microwave digestion and hydride generation-cold atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(12): 1457-1459.

[11]

Kumar K R, Madhavi K, Shyamala P, et al. A novel sy-nergetic salt-and acid-induced ligandless mixed micelle cloud point extraction of ultratrace levels of Cd, Hg, Bi, and Tl from petrochemical effluents followed by ETAAS determination[J].Atomic Spectroscopy, 2018, 39(3): 118-125.

[12]

Suvarapu L N, Baek S O. Recent studies on the specia-tion and determination of mercury in different environmental matrices using various analytical techniques[J]. International Journal of Analytical Chemistry, 2017, 2017: 3624015.

[13]

Yuksel B, Arica E. Assessment of toxic, essential, and other metal levels by ICP-MS in Lake Eymir and Mogan in Ankara, Turkey:An environmental application[J].Atomic Spectroscopy, 2018, 39(5): 179-184.

[14]

吕天峰, 袁懋, 吕怡兵, 等. 测汞仪直接测定空气颗粒物中的总汞[J]. 中国测试, 2016, 42(12): 42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009

Lü T F, Yuan M, Lü Y B, et al. Direct determination of total mercury in air particulates by mercury analyzer[J].China Measurement & Test, 2016, 42(12): 42-44. doi: 10.11857/j.issn.1674-5124.2016.12.009

[15]

聂黎行, 张烨, 朱俐, 等. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228.

Nie L X, Zhang Y, Zhu L, et al. Fast nondestructive analysis of content of mercury and aesenic and homogeneity of Niuhuang Qinxin pills by portable X-ray florescence spectrometry[J]. Spectrometry and Spectral Analysis, 2017, 37(10): 3225-3228.

[16]

苏明跃, 臧世阳, 冯爽, 等. 顺序注射-氢化物发生-原子荧光光谱法测定矿石中砷和汞含量[J]. 理化检验(化学分册), 2013, 49(8): 943-945.

Su M Y, Zang S Y, Feng S, et al. Sequential injection-HG-AFS determination of arsenic and mercury in ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(8): 943-945.

[17]

倪润祥, 雒昆利. 湿消解-原子荧光法测定煤中硒和砷[J]. 光谱学与光谱分析, 2015, 35(5): 1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05

Ni R X, Luo K L. Deterniation of total selenium and arsenic in coal by wet digestion hydride generation atomic fluorescence spectrometry (HG-AFS)[J].Spectroscopy and Spectral Analysis, 2015, 35(5): 1404-1408. doi: 10.3964/j.issn.1000-0593(2015)05-1404-05

[18]

于跃, 高亚丽, 赵雪, 等. 悬浮颗粒物浓度对溢油沉潜过程影响的试验研究[J]. 海洋环境科学, 2017, 36(6): 858-863.

Yu Y, Gao Y L, Zhao X, et al. A laboratory study on the effect of suspended particulate matter concentration on the submerging and sinking process of oil spill[J]. Marine Environment Science, 2017, 36(6): 858-863.

[19]

罗荣根. 应用固体测汞仪直接测定载金炭中的总汞[J]. 岩矿测试, 2016, 35(4): 420-424.

Luo R G. Detrermination of total mercury in gold-loaded carbon by solid mercury analyzer[J]. Rock and Mineral Analysis, 2016, 35(4): 420-424.

[20]

杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487.

Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487.

[21]

刘景龙, 罗守娟. 原子荧光光谱法测定汞标准系列溶液稳定性的探讨[J]. 中国无机分析化学, 2018, 8(4): 61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015

Liu J L, Luo S J. Determination of the mercury standard solution serious stability by atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4): 61-64. doi: 10.3969/j.issn.2095-1035.2018.04.015

[22]

江朝华, 陈旭明. 茶叶及大米中有机氯农药残留量前处理方法的研究[J]. 包装与食品机械, 2018, 36(3): 59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013

Jiang C H, Chen X M. Research on the pretreatment methods for determination of residual organochlorine pesticides in tea and rice[J].Packaging and Food Machinery, 2018, 36(3): 59-61. doi: 10.3969/j.issn.1005-1295.2018.03.013

[23]

袁永海, 尹昌慧, 元志红, 等. 氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J]. 冶金分析, 2016, 36(3): 39-43.

Yuan Y H, Yin C H, Yuan Z H, et al. Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 39-43.

[24]

吴伟. 酸化返排液无害化处理技术研究[J]. 石油与天然气化工, 2017, 46(3): 110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022

Wu W. A study on acidizing flowback water treatment[J].Chemical Engineering of Oil & Gas, 2017, 46(3): 110-114. doi: 10.3969/j.issn.1007-3426.2017.03.022

[25]

黄风林, 王迪, 李荣春, 等. 石油产品酸含量测定标准的有效性研究[J]. 石油与天然气化工, 2017, 46(2): 89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018

Huang F L, Wang D, Li R C, et al. Study on the validity of the standard for determination of acid content in petroleum product[J].Chemical Engineering of Oil & Gas, 2017, 46(2): 89-93. doi: 10.3969/j.issn.1007-3426.2017.02.018

[26]

陈莎莎, 朱信旭, 贾望鲁, 等. 用于单体氢同位素分析的混合溶剂洗脱5Å分子筛吸附正构烷烃的方法[J]. 岩矿测试, 2017, 36(4): 413-419.

Chen S S, Zhu X X, Jia W L, et al. Elution of adsorbed n-alkanes by 5Å molecular sieve using solvent mixtures for compound-specific hydrogen isotopic analysis[J]. Rock and Mineral Analysis, 2017, 36(4): 413-419.

[27]

Tesfaye B, Tefera T. Extraction of essential oil from Neem seed by using Soxhlet extraction methods[J].International Journal of Advanced Engineering, Management and Science, 2017, 3(6): 646-650. doi: 10.24001/ijaems.3.6.5

[28]

潘爱芳, 黎荣剑, 赫英, 等. 鄂尔多斯盆地石油氯仿沥青稀土元素地球化学特征[J]. 大地构造与成矿学, 2007, 31(2): 245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014

Pan A F, Li R J, He Y, et al. Geochemical features of the rare earth elements in petroleum bitumen from the Ordos Basin[J].Geotectonica et Metallogenia, 2007, 31(2): 245-250. doi: 10.3969/j.issn.1001-1552.2007.02.014

[29]

涂先新, 赵红静, 李双林, 等. 高分子量烃油气化探方法的模拟实验研究——以黄海沉积物为例[J]. 岩矿测试, 2015, 34(6): 684-691.

Tu X X, Zhao H J, Li S L, et al. Application of high molecular weight hydrocarbon to geochemical exploration for oil and gas with a simulated method using the sediment of the Yellow Sea as an example[J]. Rock and Mineral Analysis, 2015, 34(6): 684-691.

[30]

Chen T, Jin Y Y, Qiu X P, et al. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste[J]. Journal of the Air & Waste Management Association, 2015, 65: 278-286.

[31]

Dombrowski N, Teske A P, Baker B J, et al. Expansive micro-bial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments[J].Nature Communications, 2018, 9: 4999. doi: 10.1038/s41467-018-07418-0

[32]

Seema S B, Suresh M T. Oxidation of clindamycin phos-phate by cerium(Ⅳ) in perchloric acid medium-A kinetic and mechanistic approach[J].Arabian Journal of Chemistry, 2017, 10: S1469-S1476. doi: 10.1016/j.arabjc.2013.04.025

相似文献(共19条)

[1]

赵延庆. 微型氢化物发生装置在冷原子吸收分光光度法测汞中的应用. 岩矿测试, 2008, 27(1): 69-70.

[2]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[3]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[4]

周惠琼, 朱霞萍, 廖余游. 微波消解-氢化物发生原子荧光光谱法同时测定化肥中的砷和汞. 岩矿测试, 2012, 31(2): 268-271.

[5]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[6]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[7]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[8]

袁爱萍, 贺大鹏, 龙玉珊, 汪静玲. 氢化物发生-原子荧光光谱法同时测定滑石中砷和汞. 岩矿测试, 2008, 27(5): 375-378.

[9]

徐国栋, 葛建华, 贾慧娴, 杜谷, 程江, 董俊. 水浴浸提-氢化物发生-原子荧光光谱法同时测定 地质样品中痕量砷和汞. 岩矿测试, 2010, 29(4): 391-394.

[10]

刘曙, 罗梦竹, 金樱华, 陈宗宏, 任丽萍, 李晨. 微波消解-化学蒸气发生-原子荧光光谱法同时测定铁矿石中的痕量砷和汞. 岩矿测试, 2012, 31(3): 456-462.

[11]

苏明跃, 陈广志, 王晶, 姚传刚. 水浴消解-顺序注射-氢化物发生原子荧光光谱法测定铁矿石中砷和汞. 岩矿测试, 2011, 30(2): 210-213.

[12]

杨常青, 张双双, 吴楠, 侯艳娜, 徐彩春, 徐志彬. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

[13]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[14]

周立军, 张玲金, 苏建茹, 谢文明. 固体模拟样品中多环芳烃有机污染物提取方法研究. 岩矿测试, 2003, (2): 113-116120.

[15]

陈昌俊, 马红岩, 胡海明, 陈彦侠, 吴世平. 微波炉消解原子吸收法测定铜精矿中多元素. 岩矿测试, 1993, (1): 28-30.

[16]

程先忠, 郑民奇, 林能永, 黄纪雄. 密闭溶样-原子荧光光谱法测定硫磺中微量汞. 岩矿测试, 2008, 27(5): 349-352.

[17]

王桂清, 刘汉东. 悬浮液原子荧光光谱法测定化探样品中的痕量汞. 岩矿测试, 1996, (4): 293-295.

[18]

陈焱, 李勇, 李长青. 巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞. 岩矿测试, 2008, 27(6): 431-.

[19]

王洪彬. 氢化物发生-原子荧光光谱法测定面粉中微量砷. 岩矿测试, 2007, 26(6): 503-504.

计量
  • PDF下载量(14)
  • 文章访问量(180)
  • HTML全文浏览量(14)
  • 被引次数(0)
目录

Figures And Tables

索氏提取-原子荧光光谱法测定含油岩心中的汞和砷

乔宁强, 薛志伟, 王刚峰, 罗丹