【引用本文】 王增焕, 王许诺, 谷阳光, 等. 疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属[J]. 岩矿测试, 2017, 36(4): 360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011
WANG Zeng-huan, WANG Xu-nuo, GU Yang-guang, et al. Determination of 5 Heavy Metals in Seawater by Atomic Absorption Spectrometry with Solid-phase Extraction of Hydrophobic Chelate[J]. Rock and Mineral Analysis, 2017, 36(4): 360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011

疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属

中国水产科学研究院南海水产研究所, 农业部水产品加工重点实验室, 广东省渔业生态环境重点实验室, 广东 广州 510300

收稿日期: 2017-01-20  修回日期: 2017-07-09  接受日期: 2017-07-15

基金项目: 农业部水产品加工重点实验室项目(NYJG201512);中央级公益性科研院所基本科研业务费专项(2015TS16,2013YD08);广东省水产品质量安全专项(201520501)

作者简介: 王增焕, 硕士, 研究员, 主要从事海洋与渔业生态环境监测。E-mail:zh-wang1211@163.com。

Determination of 5 Heavy Metals in Seawater by Atomic Absorption Spectrometry with Solid-phase Extraction of Hydrophobic Chelate

Key Laboratory of Fishery Ecology Environment of Guangdong Province; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

Received Date: 2017-01-20
Revised Date: 2017-07-09
Accepted Date: 2017-07-15

摘要:海水重金属的含量变化与分布特征受海洋中生物地球化学过程控制。海水重金属测定的难点在于海水盐度高且重金属含量低,需要进行分离、富集等样品前处理。常规前处理方法如溶剂萃取样品量大、操作繁琐,使用大量有机溶剂,对环境和操作者危害大;共沉淀法容易造成污染。本研究以吡咯烷基二硫代甲酸铵和二乙氨基二硫代甲酸钠为螯合剂,采用商品化的固相萃取柱,分离海水中的镉、铜、铅、镍和锌5种重金属,原子吸收光谱法测定其含量。结果表明:5种元素工作曲线的相关性较好(R>0.999),镉锌的线性范围分别为0~4 μg/L和0~100 μg/L,铅铜镍的线性范围为0~40 μg/L;检出限(μg/L)分别为0.02、2.6、0.06、0.18、0.3,方法精密度高(RSD < 5%),加标回收率为93.8%~104%。本方法利用疏水性作用的固相萃取技术,实现了海水分析的绿色样品前处理。

关键词: 海水, 重金属, 固相萃取, 绿色分离技术, 二硫代氨基甲酸盐, 原子吸收光谱法

Determination of 5 Heavy Metals in Seawater by Atomic Absorption Spectrometry with Solid-phase Extraction of Hydrophobic Chelate

KEY WORDS: seawater, heavy metals, solid phase extraction, green separation technique, dithiocarbamate, Atomic Absorption Spectrometry

Highlights

· Solid phase extraction of hydrophobic chelate was used to separate Cd, Cu, Ni, Pb and Zn from seawater.

· Five heavy metals were determined by Atomic Absorption Spectrometry using dithiocarbamats as chelating agents.

· Commercial gel column (C8) was used for heavy metal separation and preconcentration material.

· The method was harmless to the environment and operators.

本文参考文献

[1]

Lagerstrom M E, Field M P, Seguret M, et al. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater:Application to the GEOTRACES program[J].Marine Chemistry, 2013, 155: 71-80. doi: 10.1016/j.marchem.2013.06.001

[2]

Mlakar M, Fiket Ž, Geček S, et al. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals[J]. Continental Shelf Research, 2015, 103(1): 1-11.

[3]

Anderson R F, Mawji E, Cutter G A, et al. GEOTRACES:Changing the way we explore ocean chemistry[J].Oceanography, 2014, 27(1): 50-61. doi: 10.5670/oceanog

[4]

Li L, Liu J, Wang X, 等. Dissolved trace metal distributionsand Cu speciation in the Southern Bohai Sea, China[J]. Marine Chemistry, 2015, 172: 34-45.

[5]

Wang B S, Lee C P, Ho T Y, et al. Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS:The influence of low level Mg and Ca[J].Talanta, 2014, 128: 337-344. doi: 10.1016/j.talanta.2014.04.077

[6]

Minami T, Konagaya W, Zheng L, et al. An off-line automated preconcentration system with ethylenedia-minetriacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2015, 854: 183-190. doi: 10.1016/j.aca.2014.11.016

[7]

O'sullivan J E, Watson R J, Butler E C V, et al. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration[J].Talanta, 2013, 115: 999-1010. doi: 10.1016/j.talanta.2013.06.054

[8]

Sohrin Y, Bruland K W. Global status of trace elements in the ocean[J].Trends in Analytical Chemistry, 2011, 30(8): 1291-1307. doi: 10.1016/j.trac.2011.03.006

[9]

Tokalıoglu Ş, Papak A, Kartal Ş, et al. Separation/preconcen-tration of trace Pb(Ⅱ) and Cd(Ⅱ) with 2-mercaptobenzothiazole impregnated amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry[J].Arabian Journal of Chemistry, 2017, 10(1): 19-23. doi: 10.1016/j.arabjc.2013.04.017

[10]

Lopez-Garcia I, Vicente-Martinez Y, Hernandez-Cordoba M, et al. Cloud point extraction assisted by silver nanoparticles for the determination of traces of cadmium using electrothermal atomic absorption spectrometry[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 375-380. doi: 10.1039/C4JA00468J

[11]

Lemos V A, Maciel M V. An on-line preconcentration system for the determination of selenium in seawater samples[J].Analytical Methods, 2013, 5: 4501-4505. doi: 10.1039/c3ay40272j

[12]

Ferreira S L C, Ferreira H S, Matos G D, et al. Critical evaluation of analytical procedures for the determination of lead in seawater[J].Applied Spectroscopy Reviews, 2012, 47(8): 633-653. doi: 10.1080/05704928.2012.692103

[13]

Butler O T, Cairns W R L, Cook J M, et al. 2013 Atomic spectrometry update-A review of advances in environmental analysis[J].Journal of Analytical Atomic Spectrometry, 2014, 29(1): 17-50. doi: 10.1039/C3JA90068A

[14]

Acar O, Kalfa O M, Yalcinkaya O, et al. Assessment of arsenic, chromium, copper and manganese determination in thermal spring waters by electrothermal atomic absorption spectrometry using various chemical modifiers[J].Analytical Methods, 2013, 5(3): 748-754. doi: 10.1039/C2AY26291F

[15]

Søndergaard J, Asmund G, Larsen M M, et al. Trace elements determination in seawater by ICP-MS with on-line preconcentration on a Chelex-100 column using a 'standard' instrument setup[J].MethodsX, 2015, 2: 323-330. doi: 10.1016/j.mex.2015.06.003

[16]

Veguería S F J, Godoy J M, de Campos R C, et al. Trace element determination in seawater by ICP-MS using online, offline and bath procedures of preconcentration and matrix elimination[J].Microchemical Journal, 2013, 106: 121-128. doi: 10.1016/j.microc.2012.05.032

[17]

Karandashev V K, Leikin A Y, KhvostikovV A, et al. Water analysis by inductively coupled plasma mass spectrometry[J].Inorganic Materials, 2016, 52(14): 1391-1404. doi: 10.1134/S0020168516140053

[18]

Wang L, Li H, Dong Y, et al. Determinationof trace elements in salt lake brines using inductively coupled plasma optical emission spectrometry after magnesium hydroxide precipitation[J].Analytical Methods, 2015, 7(19): 8235-8240. doi: 10.1039/C5AY01971K

[19]

Sun S L, Li J. Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2015, 119: 102-107. doi: 10.1016/j.microc.2014.11.006

[20]

Clough R, Sela H, Milne A, et al. Uncertainty contributionsto the measurement of dissolved Co, Fe, Pb and V in seawater using flow injection with solid phase preconcentration and detection by collision/reaction cell-quadrupole ICP-MS[J].Talanta, 2015, 133: 162-169. doi: 10.1016/j.talanta.2014.08.045

[21]

Wang T, Sung Y J, Hsu C H, et al. Combining ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone microextraction in an inexpensive disposable pipette with laser ablation inductively coupled plasma mass spectrometry for the determination of Cd and Pd[J].Journal of the Chinese Chemical Society, 2014, 61(10): 1154-1160. doi: 10.1002/jccs.201300441

[22]

王增焕, 王许诺. 萃取分离-原子吸收光谱法测定海水中镉铜铅锌铬镍[J]. 冶金分析, 2014, 34(2): 44-47.

Wang Z H, Wang X N. Determination of cadmium, copper, lead, zinc, chromium and nickel in seawater by atomic absorption spectrometry after extraction separation[J]. Metallurgical Analysis, 2014, 34(2): 44-47.

[23]

Freslon N, Bayon G, Birot D, et al. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation[J].Talanta, 2011, 85(1): 582-587. doi: 10.1016/j.talanta.2011.04.023

[24]

Milne A, Landing W, Bizimis M, et al. Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS)[J].Analytica Chimica Acta, 2010, 665(2): 200-207. doi: 10.1016/j.aca.2010.03.027

[25]

谢发之, 张峰君, 宣寒, 等. 硫代乙酰胺键合硅胶在线选择性固相萃取火焰原子吸收测定环境样品中痕量铜[J]. 分析化学, 2012, 40(11): 1720-1724.

Xie F Z, Zhang F J, Xuan H, et al. Determination of trace copper in environmental samples by flame atomic absorption spectrometry after on-line selective preconcentration with thioacetamide modified silica gel mini-column[J]. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1720-1724.

[26]

Yilmaz V, Kartal S. Determination of some trace metals by FAAS after solid-phase extraction with amberlite XAD-1180/TAN chelating resin[J].Analytical Sciences, 2012, 28(5): 515-521. doi: 10.2116/analsci.28.515

[27]

Tohidifar H, Moghimi A, Ayvazzadeh O, et al. Determina-tion of lead(Ⅱ) in milk by flame atomic absorption spectrometry after solid phase extraction[J]. Asian Journal of Chemistry, 2013, 25(11): 5981-5984.

[28]

Trujillo I S, Alonso E V, de Torres A G, et al. Develop-ment of a solid phase extraction method for the multielement determination of trace metals in natural waters including sea-water by FI-ICP-MS[J].Microchemical Journal, 2012, 101: 87-94. doi: 10.1016/j.microc.2011.11.003

[29]

Karadjova I. Determination of Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb in natural waters, alkali and alkaline earth salts by electrothermal atomic absorption spectrometry after preconcentration by column solid phase extraction[J].Mikrochimica Acta, 1999, 130(3): 185-190. doi: 10.1007/BF01244926

[30]

Aghamohammadi M, Faraji M, Shahdousti P, et al. Trace determination of lead, chromium and cadmium in herbal medicines using ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry[J].Phytochemical Analysis, 2015, 26(3): 209-214. doi: 10.1002/pca.v26.3

[31]

Dasbasi T, Sacmaci S, Ulgen A, et al. A solid phaseextraction procedure for the determination of Cd(Ⅱ) and Pb(Ⅱ) ions in food and water samples by flame atomic absorption spectrometry[J]. Food Chemistry, 2015, 174(C): 591-596.

[32]

Giakisikli G, Anthemidis A N. Automated magnetic sorbent extractionbased on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metaldetermination[J]. Talanta, 2013, 110: 229-235.

[33]

Krasnodębska-Ostręga B, Sadowska M, Piotrowska K, et al. Thallium(Ⅲ) determination in the baltic seawater samples by ICP-MS after preconcentration on SGX C18 modified with DDTC[J].Talanta, 2013, 112: 73-79. doi: 10.1016/j.talanta.2013.03.059

[34]

Carvalho R N C S, Brito G B, Korn M G A, et al. Multi-element determination of copper, iron, nickel, manganese, lead and zinc in environmental water samples by ICP-OES after solid phase extraction with a C18 cartridge loaded with 1-(2-pyridylazo)-2-naphthol[J].Analytical Methods, 2015, 7: 8714-8719. doi: 10.1039/C5AY01929J

[35]

Golbedaghi R, Jafari S, Khajavi F, et al. Preconcentration and determination of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) ions on octadecyl silica membrane disk modified with 2-mercapto-benzoimidazole by flame atomic absorption spectrometry[J].Analytical Methods, 2012, 4: 2318-2322. doi: 10.1039/c2ay25279a

相似文献(共20条)

[1]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[2]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[3]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[4]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[5]

刘静, 王丽, 曾兴宇, 张艳萍, 王旭亮. 固相萃取-气相色谱法测定海水中狄氏剂和多氯联苯. 岩矿测试, 2014, 33(2): 282-286.

[6]

申书昌, 冷茉含, 彭程, 吕伟超. 二氧化钛表面键合配位体固相萃取填料的制备及其吸附性能研究. 岩矿测试, 2018, 37(1): 21-29. doi: 10.15898/j.cnki.11-2131/td.201706080096

[7]

周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024

[8]

陈宗团, 张海政. 萃取色谱富集—等离子体质谱测定海水中的超痕量稀土. 岩矿测试, 1997, (3): 201-206.

[9]

刘金, 彭元, 陈红梅, 程先忠. 鸡蛋膜固相萃取-石墨炉原子吸收光谱法测定水样中的微量铅. 岩矿测试, 2012, 31(5): 872-876.

[10]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[11]

胡秋芬, 杨光宇, 李德良, 尹家元, 杨艳, 台希. 2-(2-喹啉偶氮)-1,3-二羟基苯固相萃取光度法测定水中铀. 岩矿测试, 2004, (3): 187-190.

[12]

翟磊, 詹秀春, 樊兴涛, 温宏利, 焦距, 刘雷雷. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究. 岩矿测试, 2015, 34(1): 118-128. doi: 10.15898/j.cnki.11-2131/td.2015.01.016

[13]

赵雷, 邱会东, 原金海. 微波消解-原子吸收光谱法测定岩芯中的8种金属元素. 岩矿测试, 2011, 30(4): 461-464.

[14]

燕娜, 赵小龙, 赵生国, 郑红文. 红土镍矿样品前处理方法和分析测定技术研究进展. 岩矿测试, 2015, 34(1): 1-11. doi: 10.15898/j.cnki.11-2131/td.2015.01.001

[15]

沈亚婷. 土壤溶解性有机质对植物吸收-输送-贮存重金属的影响研究现状与进展. 岩矿测试, 2012, 31(4): 571-575.

[16]

德国耶拿分析仪器股份公司. 连续光源火焰原子吸收法应用报告——发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2007, 26(5): 文后I-文后I.

[17]

德国耶拿分析仪器股份公司. 发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2006, 25(4): 397-397.

[18]

德国耶拿分析仪器股份公司中国总部. 发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2008, 27(6): -.

[19]

牟世芬, 梁立娜, 蔡亚岐, 墨淑敏, 温美娟. 高效阴离子交换色谱-紫外检测器联用测定海水中碘. 岩矿测试, 2006, 25(2): 122-124.

[20]

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁. 岩矿测试, 2014, 33(4): 545-550.

计量
  • PDF下载量(23)
  • 文章访问量(964)
  • HTML全文浏览量(295)
  • 被引次数(0)
目录

Figures And Tables

疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属

王增焕, 王许诺, 谷阳光, 陈瑛娜