【引用本文】 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115
LI Chao, WANG Deng-hong, QU Wen-jun, et al. A Review and Perspective on Analytical Methods of Critical Metal Elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115

关键金属元素分析测试技术方法应用进展

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质科学院矿产资源研究所, 北京 100037

3. 

昆明理工大学国土资源工程学院, 云南 昆明 650093

收稿日期: 2019-07-31  修回日期: 2020-01-11  接受日期: 2020-04-16

基金项目: 国家自然科学基金项目(41673060,41873065);国家重点研发计划专项(2017YFC0602700)

作者简介: 李超, 博士, 副研究员, 从事地质样品分析测试研究。E-mail:Re-Os@163.com

A Review and Perspective on Analytical Methods of Critical Metal Elements

1. 

National Research Center for Analysis, Beijing 100037, China

2. 

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

Received Date: 2019-07-31
Revised Date: 2020-01-11
Accepted Date: 2020-04-16

摘要:以稀有、稀散、稀土、铂族元素为主体的战略性关键金属矿产资源,在新材料、新能源和信息技术等新兴产业中发挥着越来越关键的作用。随着我国关键矿产资源地质调查的不断深入,关键金属元素以其赋存基体复杂、不同矿物含量差异大、化学性质不稳定等特点对分析测试技术提出了新的挑战。本文根据化学组成不同,对关键金属元素主要赋存基体进行了分类,主要分为硅酸盐、碳酸盐、硫酸盐、钨酸盐、磷酸盐、氧化物、硫化物、卤化物等。对于不同的基体岩石矿物,通常采用酸溶法(硝酸-氢氟酸组合、王水)或碱熔法等传统溶样方法进行化学消解。评述了当前关键金属元素测试常用的电子探针、电感耦合等离子体质谱、电感耦合等离子体发射光谱、X射线荧光光谱等仪器的特点及应用,总结了关键金属元素分析过程中出现的样品难溶解、回收率不完全、测试过程氧化物和同质异位素干扰、样品和标准基体不一致等常见问题,并提出了相应的解决方案。微区原位分析凭借其高效率、低成本、高空间分辨率的优势,以及野外现场分析凭借其简单快速、贴近野外工作的特点是关键金属元素测试技术发展的主要趋势。

关键词: 关键金属元素, 赋存基体, 样品处理方法, 分析测试技术, 微区原位分析, 野外现场分析

要点

(1) 关键金属元素以其不常见、分布不均、基体复杂等特点,对分析测试提出了新的挑战。

(2) 评述了样品难溶、回收不完全、测试干扰、基体效应等影响测试的主要因素。

(3) 总结了硅酸盐、碳酸盐、氧化物、硫化物等不同基体样品的化学前处理方法。

(4) 微区原位分析和野外现场分析是关键金属元素分析技术发展的趋势。

A Review and Perspective on Analytical Methods of Critical Metal Elements

ABSTRACT

BACKGROUND:

Strategic critical metal mineral resources including rare, dispersed, rare earth and platinum group elements play an increasingly critical role in emerging industries such as new materials, new energy and information technology. With the deepening of the geological survey of key mineral resources in China, the critical metal elements present new challenges to analytical techniques due to their complex matrix, large differences in different mineral contents, and unstable chemical properties.

OBJECTIVES:

To introduce recent analytical techniques and applications for critical metal elements in different types of geological samples.

METHODS:

Based on different chemical composition, the main matrices of critical metal elements were classified, mainly divided into silicate, carbonate, sulfate, tungstate, phosphate, oxide, sulfide and halide. For different types of rocks and minerals, chemical digestion was largely carried out by traditional dissolution methods such as the acid dissolution method (nitric acid-hydrofluoric acid combination, aqua regia) or alkali fusion methods.

RESULTS:

The characteristics and application of commonly used instruments including electronic probe microanalyzer, inductively coupled plasma-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, and X-ray fluorescence spectroscopy were reviewed. The problems during critical metal analysis including incomplete dissolution, low recovery, oxides and isobaric interference, inconsistency between samples and standard matrices were reviewed and corresponding solutions were proposed.

CONCLUSIONS:

In situ microanalysis with the advantages of high efficiency, low cost, and high spatial resolution, and field on-site geoanalysis with its simple, fast and close to field work features are the main trends in the development of critical metal elements analytical techniques.

KEY WORDS: critical metal elements, occurrence matrix, sample pretreatment methods, analytical technique, in situ microanalysis, field on-site geoanalysis

HIGHLIGHTS

(1) Critical metal elements present new challenges for analytical techniques due to their uncommon, unevenly distributed, and complex matrix characteristics.

(2) Incomplete dissolving of minerals, extraction of elements, matrix effect between sample and standard solution, and interferences are main challenges in critical metal elements analysis.

(3) The chemical preparation procedures for the different minerals such as silicate, carbonate, oxide and sulfide were summarized.

(4) Microarea in situ analysis and field on-site analysis are the development trend of critical metal elements analysis.

本文参考文献

[1]

王登红, 王瑞江, 孙艳, 等. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述[J]. 地球学报, 2016, 37(5): 569-580.

Wang D H, Wang R J, Sun Y, et al. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China[J]. Acta Geoscientia Sinica, 2016, 37(5): 569-580.

[2]

王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209.

Wang D H. Study on critical mineral resources:Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.

[3]

毛景文, 杨宗喜, 谢桂青, 等. 关键矿产——国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698.

Mao J W, Yang Z X, Xie G Q, et al. Critical minerals:International trends and thinking[J]. Mineral Deposits, 2019, 38(4): 689-698.

[4]

翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111.

Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.

[5]

蒋少涌, 温汉捷, 许成, 等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金, 2019, 33(2): 10-16.

Jiang S Y, Wen H J, Xu C, et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 10-16.

[6]

程秀花, 唐南安, 张明祖, 等. 稀有分散元素分析方法的研究进展[J]. 理化检验(化学分册), 2013, 49(6): 757-764.

Cheng X H, Tang N A, Zhang M Z, et al. Recent advances of researches on analytical methods for rare and dispersed elements[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2013, 49(6): 757-764.

[7]

屈文俊, 王登红, 朱云, 等. 稀土稀有稀散元素现代仪器测试全新方法的建立[J]. 地质学报, 2019, 93(6): 1514-1522.

Qu W J, Wang D H, Zhu Y, et al. Establishment of new method for critical elements determination using modern analytical instruments[J]. Acta Geologica Sinica, 2019, 93(6): 1514-1522.

[8]

皮桥辉, 胡瑞忠, 王登红, 等. 广西大厂锡多金属矿田西矿带稀散元素铟的富集规律研究——来自矿石组构和闪锌矿地球化学的证据[J]. 矿床地质, 2015, 34(2): 379-396.

Pi Q H, Hu R Z, Wang D H, et al. Enrichment of indium in west ore belt of Dachang orefield:Evidence from ore textures and sphalerite geochemistry[J]. Mineral Deposits, 2015, 34(2): 379-396.

[9]

Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study[J].Ore Geology Reviews, 2011, 39(4): 188-217. doi: 10.1016/j.oregeorev.2011.03.001

[10]

杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009, 28(3): 288-304.

Du A D, Qu W J, Li C, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304.

[11]

王登红, 王瑞江, 李建康, 等. 我国三稀矿产资源的基本特征与研究现状[J]. 矿床地质, 2012, 31(Supplement 1): 41-42.

Wang D H, Wang R J, Li J K, et al. Basic characteristics and research status of the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) in China[J]. Mineral Deposits, 2012, 31(Supplement 1): 41-42.

[12]

王成辉, 杨岳清, 王登红, 等. 江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物[J]. 岩矿测试, 2018, 37(1): 108-110.

Wang C H, Yang Y Q, Wang D H, et al. Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province[J]. Rock and Mineral Analysis, 2018, 37(1): 108-110.

[13]

Zhang S H, Zhao Y, Li Q L, et al. First identification of baddeleyite related/linked to contact metamorphism from carbonatites in the world's largest REE deposit, Bayan Obo in North China Craton[J].Lithos, 2017, 284-285: 654-665. doi: 10.1016/j.lithos.2017.05.015

[14]

李慧民, 李怀坤, 陈志宏, 等. 基性岩斜锆石U-Pb同位素定年3种方法之比较[J]. 地质通报, 2007, 26(2): 128-135.

Li H M, Li H K, Chen Z H, et al. Comparison of three methods for baddeleyite U-Pb isotope dating of basic rocks[J]. Geological Bulletin of China, 2007, 26(2): 128-135.

[15]

文田耀. 电感耦合等离子体质谱法测定重晶石中的微量元素[J]. 理化检验(化学分册), 2016, 52(6): 672-676.

Wen T Y. ICP-MS determination of trace elements in barite[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(6): 672-676.

[16]

李艳玲, 熊采华, 方金东, 等. 基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素[J]. 岩矿测试, 2005, 24(2): 87-92.

Li Y L, Xiong C H, Fang J D, et al. Determination of ultra-trace rare earth elements in barite by ICP-MS after matrix separation[J]. Rock and Mineral Analysis, 2005, 24(2): 87-92.

[17]

唐索寒, 李津, 梁细荣, 等. 钕同位素比值143Nd/144Nd标准溶液研制[J]. 岩矿测试, 2017, 36(2): 163-170.

Tang S H, Li J, Liang X R, et al. Reference material preparation of 143Nd/144Nd isotope ratio[J]. Rock and Mineral Analysis, 2017, 36(2): 163-170.

[18]

王祎亚, 邓赛文, 王毅民, 等. 磷矿石分析方法评述[J]. 冶金分析, 2013, 33(4): 26-34.

Wang Y Y, Deng S W, Wang Y M, et al. Review on analytical methods of phosphate ores[J]. Metallurgical Analysis, 2013, 33(4): 26-34.

[19]

王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661-664.

Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661-664.

[20]

喻祥芬, 张德琼, 杨启顺, 等. 锡石中铌钽赋存形式的研究[J]. 地球化学, 1976, (1): 73-76.

Yu X F, Zhang D Q, Yang Q S, et al. A study on the mode of occurrence of niobium and tantalum beared in cassiterite[J]. Geochimica, 1976, (1): 73-76.

[21]

文加波. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较[J]. 岩矿测试, 2011, 30(4): 481-485.

Wen J B. Quantification of gallium in bauxites by inductively coupled plasma-atomic emission spectrometry-Comparison of sample pretreatment methods between alkali fusion and aciddissolution[J]. Rock and Mineral Analysis, 2011, 30(4): 481-485.

[22]

Norman M, Robinson P, Clark D, et al. Major- and trace-element analyses of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF:New data on international reference materials[J].The Canadian Mineralogist, 2003, 41: 293-305. doi: 10.2113/gscanmin.41.2.293

[23]

杨雪, 李超, 李欣尉, 等. 半封闭硝酸溶解体系ICP-MS快速测定辉钼矿的Re-Os年龄及Re含量[J]. 岩矿测试, 2016, 35(1): 24-31.

Yang X, Li C, Li X W, et al. A rapid method to determine the Re-Os age and Re content of molybdenite by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(1): 24-31.

[24]

代小吕, 董利明, 赵欣, 等. 沉淀分离-电感耦合等离子体质谱法测定方铅矿中铊[J]. 分析试验室, 2016, 35(3): 263-265.

Dai X L, Dong L M, Zhao X, et al. Determination of thallium in galena by precipitation separation combined with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 263-265.

[25]

朱健, 马程程, 赵磊, 等. 高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J]. 理化检验(化学分册), 2014, 50(8): 960-963.

Zhu J, Ma C C, Zhao L, et al. ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2014, 50(8): 960-963.

[26]

宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331.

Song W J, Dai S F, Zhao L, et al. Determination of boron in coal samples with microwave digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331.

[27]

Müller A, René M, Behr H J, et al. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky Les Mts.Czech Republic)[J]. Mineralogy & Petrology, 2003, 79(3-4): 167-191.

[28]

Batanova V, Sobolev A V, Kuzmin D V, et al. Trace element analysis of olivine:High precision analytical method for JEOL JXA-8230 electron probe microanalyser[J].Chemical Geology, 2015, 419: 149-157. doi: 10.1016/j.chemgeo.2015.10.042

[29]

许涛, 崔爱端, 杜梅, 等. 电感耦合等离子体发射光谱法测定稀土铌钽矿中稀土元素和钍量[J]. 岩矿测试, 2009, 28(6): 549-552.

Xu T, Cui A D, Du M, et al. Determination of rare earth elements and thorium in Re-Nb-Ta ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2009, 28(6): 549-552.

[30]

刘贵磊, 许俊玉, 温宏利, 等. 动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J]. 桂林理工大学学报, 2016, 36(1): 176-183.

Liu G L, Xu J Y, Wen H L, et al. Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J]. Journal of Guilin University of Technology, 2016, 36(1): 176-183.

[31]

吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12-19.

Wu S T, Wang Y P, Sun D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19.

[32]

李冰, 杨红霞. 电感耦合等离子体质谱技术最新进展[J]. 分析试验室, 2003, 22(1): 94-100.

Li B, Yang H X. Recent advances in inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2003, 22(1): 94-100.

[33]

刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32): 3863-3878.

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878.

[34]

Zhang W, Zhao C H, Liu Y S, et al. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(3): 271-289. doi: 10.1111/j.1751-908X.2012.0156.x

[35]

张保科, 许俊玉, 王蕾, 等. 锂辉石样品中稀有稀散稀土等多元素的测定方法[J]. 桂林理工大学学报, 2016, 36(1): 184-190.

Zhang B K, Xu J Y, Wang L, et al. Multi-elements simultaneous determination methods for rare, scattered and rare earth elements in spodumene samples[J]. Journal of Guilin University of Technology, 2016, 36(1): 184-190.

[36]

马圣钞, 王登红, 刘善宝, 等. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 2019, 38(4): 877-897.

Ma S C, Wang D H, Liu S B, et al. Mineral chemistry of micas from Ke'eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 2019, 38(4): 877-897.

[37]

侯江龙, 李建康, 王登红, 等. 四川甲基卡锂矿床花岗岩体中云母类矿物的元素组成对矿区成矿条件的指示[J]. 地球科学, 2018, 43(Supplement 2): 123-138.

Hou J L, Li J K, Wang D H, et al. The composition and metallogenic significance of micas from Jiajika two-mica granite, Sichuan Province[J]. Earth Science, 2018, 43(Supplement 2): 123-138.

[38]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[39]

蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458-464.

Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458-464.

[40]

Sun H, Xiao Y, Gao Y, et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J].Proceedings of the National Academy of Sciences, 2018, 115(15): 3782-3787. doi: 10.1073/pnas.1711862115

[41]

Li C, Zhou L M, Zhao Z, et al. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160: 38-47. doi: 10.1016/j.jseaes.2018.03.025

[42]

Zhou L M, Wang R, Hou Z Q, et al. Hot Paleocene-Eocene Gangdese arc:Growth of continental crust in southern Tibet[J].Gondwana Research, 2018, 62: 178-197. doi: 10.1016/j.gr.2017.12.011

[43]

赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28-39.

Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28-39.

[44]

Lin J, Liu Y, Tong X, et al. Improved in situ Li isotopic ratio analysis of silicates by optimizing signal intensity, isotopic ratio stability and intensity matching using ns-LA-MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(4): 834-842. doi: 10.1039/C6JA00409A

[45]

Wiedenbeck M, Rosner M, Halama R, et al. Tourmaline reference materials for the in situ determination of lithium isotope composition[J].Geochmica et Cosmochimica Acta, 2009, 73(13): 40-62.

[46]

Gao Y Y, Li X H, Griffin W L, et al. Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora)[J].Scientific Reports, 2015, 5(1): 16878. doi: 10.1038/srep16878

[47]

Su B X, Gu X Y, Deloule E, et al. Potential orthopy-roxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination[J].Geostandards and Geoanalytical Research, 2015, 39(3): 357-369. doi: 10.1111/j.1751-908X.2014.00313.x

[48]

苏本勋. 锂同位素在地幔地球化学中的应用[J]. 矿物岩石地球化学通报, 2017, 36(1): 6-13.

Su B X. Applications of Li isotopes in mantle geo-chemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1): 6-13.

[49]

张欣, 许俊玉, 范凡, 等. 断续流动氢化物发生-原子吸收光谱法测定地质样品中的硒[J]. 桂林理工大学学报, 2016, 36(1): 191-194.

Zhang X, Xu J Y, Fan F, et al. Determination of selenium in geological samples by intermittent-flow hydride generation atomic absorption spectrometry[J]. Journal of Guilin University of Technology, 2016, 36(1): 191-194.

[50]

尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52.

Yin M. Progress and prospect on geoanalytical techniques in China[J]. Rock and Mineral Analysis, 2009, 28(1): 37-52.

[51]

樊兴涛, 温宏利, 屈文俊, 等.一种快速分析离子吸附型稀土元素的方法[P].[2016-05-04].

Fan X T, Wen H L, Qu W J, et al.A rapid method for the analysis of ion adsorbed rare earth elements[P].[2016-05-04].

[52]

焦距, 杨啸涛, 袁继海, 等. 便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用[J]. 岩矿测试, 2016, 35(4): 366-372.

Jiao J, Yang X T, Yuan J H, et al. Development of a portable Li-K analyzer and its application in the determination of lithium in spodumene[J]. Rock and Mineral Analysis, 2016, 35(4): 366-372.

[53]

Meisel T, Fellner N, Moser J, et al. A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials[J].Journal of Analytical Atomic Spectrometry, 2003, 18: 720-726. doi: 10.1039/b301754k

[54]

李刚, 姚玉玲, 李婧祎, 等. 铌钽元素分析技术新进展[J]. 岩矿测试, 2018, 37(1): 1-14.

Li G, Yao Y L, Li J Y, et al. Progress of niobium and tantalum analytical technology[J]. Rock and Mineral Analysis, 2018, 37(1): 1-14.

[55]

Yuan H, Hu S, Tong J, et al. Preparation of ultra-pure water and acids and investigation of background of an ICP-MS laboratory[J].Talanta, 2000, 52(6): 971-981. doi: 10.1016/S0039-9140(00)00439-2

[56]

孙卫东, 李聪颖. 元素的地球化学性质与关键金属成矿:前言[J]. 岩石学报, 2020, 36(1): 1-4.

Sun W D, Li C Y. The geochemical behavior and mineralization of critical metals:Preface[J]. Acta Petrologica Sinica, 2020, 36(1): 1-4.

[57]

温汉捷, 周正兵, 朱传威, 等. 稀散金属超常富集的主要科学问题[J]. 岩石学报, 2019, 35(11): 3271-3291.

Wen H J, Zhou Z B, Zhu C W, et al. Critical scientific issues of super-enrichment of dispersed metals[J]. Acta Petrologica Sinica, 2019, 35(11): 3271-3291.

相似文献(共19条)

[1]

钟俊, 林荣钦, 靳兰兰, 王秀季, 肖茂山, 盛绍基, 戚文玲. 野外现场多元素快速分析方法的研究和应用Ⅲ.磷钙镁的微珠比色测定. 岩矿测试, 2003, (1): 15-20.

[2]

戚文玲, 王秀季, 盛绍基, 杨艳秋, 靳兰兰, 李小红, 谈建文. 野外现场多元素快速分析方法的研究和应用—Ⅱ·铜铁锌的测定. 岩矿测试, 2002, (4): 259-265.

[3]

戚文玲, 盛绍基. 野外现场多元素快速分析方法的研究和应用I.分析技术及金的测定. 岩矿测试, 2002, (2): 81-92.

[4]

陈冬梅 黄慧萍 盛绍基 戚文玲. 野外现场多元素快速分析方法的研究和应用Ⅳ.砷和镉的微珠比色测定. 岩矿测试, 2004, (1): 25-29.

[5]

李风, 席永婷. 微珠比色法用于野外现场天然水样和化探样品中微量铁的分析. 岩矿测试, 2008, 27(6): 477-478.

[6]

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

[7]

陈道华, 刁少波, 张欣. 我国海洋地质分析测试技术. 岩矿测试, 2013, 32(6): 850-859.

[8]

马光祖, 罗立强. 人工神经网络与分析测试技术的研究与发展. 岩矿测试, 1997, (4): 267-276.

[9]

曹建勇. 泡塑富集-硫代米蚩酮萃取微珠比色法在野外测金的应用. 岩矿测试, 2006, 25(2): 193-194.

[10]

李俊峰, 王春芬, 田玉平, 陈淑桂, 王洪艳. 连续流动化学发光法测定地质样品中的银. 岩矿测试, 2003, (2): 117-120.

[11]

刘亚轩, 李晓静, 白金峰, 马娜, 张勤. 植物样品中无机元素分析的样品前处理方法和测定技术. 岩矿测试, 2013, 32(5): 681-693.

[12]

许涛, 罗立强. 原位微区X射线荧光光谱分析装置与技术研究进展. 岩矿测试, 2011, 30(3): 375-383.

[13]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[14]

戴婕, 徐金沙, 潘晓东, 任静, 张茜. 微束分析技术在研究伴生金元素赋存状态中的应用. 岩矿测试, 2011, 30(6): 655-663.

[15]

燕娜, 赵小龙, 赵生国, 郑红文. 红土镍矿样品前处理方法和分析测定技术研究进展. 岩矿测试, 2015, 34(1): 1-11. doi: 10.15898/j.cnki.11-2131/td.2015.01.001

[16]

张保科, 李迎春, 唐力君, 张月琴. 钻井泥浆样品现场高效液相色谱分析——冷冻与失水两种前处理方法的讨论. 岩矿测试, 2005, (4): 241-244.

[17]

王毅民, 朱节清. 矿物微区元素分布分析研究:核探针的地学应用初探. 岩矿测试, 1991, (4): 262-266.

[18]

葛良全. 现场X射线荧光分析技术进展. 岩矿测试, 2013, 32(2): 203-212.

[19]

陈月源, 高宏, 王国有, 张旺强, 魏轶. 载金炭样品中金分析数据的灰色处理方法. 岩矿测试, 2010, 29(4): 445-450.

计量
  • PDF下载量(66)
  • 文章访问量(676)
  • HTML全文浏览量(173)
  • 被引次数(0)
目录

Figures And Tables

关键金属元素分析测试技术方法应用进展

李超, 王登红, 屈文俊, 孟会明, 周利敏, 樊兴涛, 李欣尉, 赵鸿, 温宏利, 孙鹏程