【引用本文】 周成英, 刘美子, 张华, 等. 铜精矿化学成分分析实验室间比对结果评价和离群值原因分析[J]. 岩矿测试, 2021, 40(4): 619-626. doi: 10.15898/j.cnki.11-2131/td.202005210074
ZHOU Cheng-ying, LIU Mei-zi, ZHANG Hua, et al. Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers[J]. Rock and Mineral Analysis, 2021, 40(4): 619-626. doi: 10.15898/j.cnki.11-2131/td.202005210074

铜精矿化学成分分析实验室间比对结果评价和离群值原因分析

国合通用测试评价认证股份公司能力验证中心, 北京 101407

收稿日期: 2020-05-21  修回日期: 2020-09-21  接受日期: 2021-06-10

基金项目: 国家新材料测试评价平台项目(TC170A5SU-1)

作者简介: 周成英, 硕士, 高级工程师, 从事能力验证和有色金属分析测试工作。E-mail: zhouchengying@cutc.net

Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers

Proficiency Testing Center, China United Test & Certification Co., LTD, Beijing 101407, China

Received Date: 2020-05-21
Revised Date: 2020-09-21
Accepted Date: 2021-06-10

摘要:铜精矿成分分析是判定其品质的重要手段,尤其是主元素铜的分析。目前,测定铜精矿中铜含量的主要分析方法有碘量法、电感耦合等离子体发射光谱法(ICP-OES)、火焰原子吸收光谱法(FAAS)、X射线荧光光谱法(XRF)、电解重量法等。为确保检测标准量值统一、准确、可靠,本文组织开展了铜精矿中铜镁铅锌的测定实验室间比对活动。通过对参加实验室的检测结果进行统计分析,评价参加实验室对铜精矿中铜镁铅锌测定的技术水平和能力。结果表明:大部分实验室的检测结果为满意,铜精矿中铜的满意率为92.9%,满意率较高;铜镁铅锌的满意率平均值为89.0%。少数实验室出现离群值主要在于样品前处理、检测人员对检测方法未能充分理解并熟练掌握、仪器状态等其他相关因素。碱浸法因样品分解不完全,不能作为铜精矿前处理方法;碱熔法因工序繁琐,易产生基体干扰,不适合作为铜精矿前处理方法。本文建议优先采用酸溶-滴定法测定铜精矿中的铜,而采用酸溶ICP-OES法测定铜精矿中的铜镁铅锌,该方法高效快捷,但其稳定性需要进一步的实验考察。

关键词: 铜精矿, 实验室间比对, 能力验证, 离群值, 酸溶, 滴定法

要点

(1) 铜精矿中铜镁铅锌的平均满意率为89.0%,大部分实验室获得满意结果。

(2) 碱熔法处理铜精矿工序繁琐,易产生基体干扰,建议优先采用酸溶-滴定法测定铜精矿中的铜。

(3) 采用酸溶ICP-OES法同时测定铜精矿中的铜镁铅锌,需开展进一步研究。

Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers

ABSTRACT

BACKGROUND:

Composition analysis of copper concentrate is an important method to determine its quality, especially the analysis of the main element copper. Currently, the main analytical methods for the determination of copper content in copper concentrate include iodometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), flame atomic absorption spectrometry (FAAS), X-ray fluorescence spectrometry (XRF), and electrolytic gravimetric methods.

OBJECTIVES:

To ensure the uniformity, accuracy, and reliability of the standard values, interlaboratory comparison activities for the determination of copper, magnesium, lead, and zinc in copper concentrate were organized.

METHODS:

Through the statistical analysis of the test results of the participating laboratories, the technical level and ability of the participating laboratories in the determination of copper, magnesium, lead, and zinc in copper concentrates were evaluated.

RESULTS:

The results showed that most laboratory results were satisfactory, the satisfaction rate of copper in the copper concentrate was 92.9%, and the average satisfaction rate of copper, magnesium, lead, and zinc was 89.0%. The outliers in a few laboratories were mainly attributed to sample pretreatment, lack of understanding and mastering of the analytical methods by the testing personnel, and other related factors, such as the instrument status.

CONCLUSIONS:

Because of incomplete sample decomposition, the alkali leaching method could not be used for pretreatment of copper concentrate. Additionally, the alkali fusion method is not recommended for copper concentrate pretreatment because of its complicated process and matrix interference. Acid dissolution titration is preferred as a pretreatment method for the determination of copper in the copper concentrate. The acid-dissolution ICP-OES method for simultaneous determination of Cu, Mg, Pb, and Zn in the copper concentrate is efficient and rapid with satisfactory results. However, further experiments are required to investigate their stabilities.

KEY WORDS: copper concentrate, interlaboratory comparison, proficiency testing, outlier, acid dissolution, iodometry

HIGHLIGHTS

(1) The average satisfactory rate of Cu, Mg, Pb, and Zn in the copper concentrate was 89.0%, and most laboratories obtained satisfactory results.

(2) Alkaline fusion method is cumbersome to process copper concentrates and is prone to matrix interference. It is recommended to use the acid dissolution titration method for the determination of copper in copper concentrates.

(3) Simultaneous determination of copper, magnesium, lead, and zinc in copper concentrates using acid-soluble ICP-OES requires further research.

本文参考文献

[1]

吴学伟, 邢希霞. 碘量法测定铜精矿中铜含量不确定度的评定[J]. 山西冶金, 2019, 42(5): 44.

Wu X W, Xing X X. Evaluation of uncertainty in the determination of copper content in copper concentrate by iodometry[J]. Shanxi Metallurgy, 2019, 42(5): 44.

[2]

廖波, 马丽. ICP-OES在火试金重量法分析铜精矿中金、银的研究和应用[J]. 化工管理, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022

Liao B, Ma L. Study and application of ICP-OES in the analysis of gold and silver in copper concentrate by fire assay gravimetric method[J].Chemical Enterprise Management, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022

[3]

董天秋. 利用X射线荧光光谱法测定铜精矿中砷、铅和镉[J]. 化学工程与装备, 2019, 48(7): 286.

Dong T Q. Determination of arsenic, lead and cadmium in copper concentrate by X-ray fluorescence spectrometry[J]. Chemical Engineering & Equipment, 2019, 48(7): 286.

[4]

董诚忠, 孙清. 碘量法测定铜精矿中的铜[J]. 黄金, 2020, 41(6): 78-80.

Dong C Z, Sun Q. Determination of copper in copper concentrates by iodometry[J]. Gold, 2020, 41(6): 78-80.

[5]

杨荣清. 浅析短碘量法测定铜精矿中铜含量的影响因素[J]. 科学技术创新, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005

Yang R Q. Analysis of the factors affecting the determination of copper content in copper concentrate by short iodometry[J].Scientific and Technological Innovation, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005

[6]

刘奇, 严静, 王丽丽, 等. 重量法与能量色散X射线荧光光谱法测定铜精矿中硫含量的比较[J]. 世界有色金属, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096

Liu Q, Yan J, Wang L L, et al. Comparison of gravimetric and energy dispersive X-ray fluorescence spectrometry for the determination of sulfur in copper concentrates[J].World Nonferrous Metals, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096

[7]

邹游. 铜精矿中铜品位化验结果产生偏差的原因分析[J]. 世界有色金属, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142

Zou Y. Cause analysis of deviation of copper grade test results in copper concentrates[J].World Nonferrous Metals, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142

[8]

黎香荣, 罗明贵, 黄园, 等. 光度滴定法测定铜精矿中铜[J]. 冶金分析, 2020, 40(5): 31-33.

Li X R, Luo M G, Huang Y, et al. Determination of copper in copper concentrate by photometric titration[J]. Metallurgical Analysis, 2020, 40(5): 31-33.

[9]

刘久苗, 许敏. ICP光谱法测定铜精矿中砷含量的不确定度评定[J]. 工业技术创新, 2018, 5(5): 68.

Liu J M, Xu M. Evaluation of uncertainty in determination of arsenic in copper concentrate using ICP spectrophotometry[J]. Industrial Technology Innovation, 2018, 5(5): 68.

[10]

张涛. 矿石中金、银含量能力验证结果分析与方法评价[J]. 科技创新与应用, 2017, 7(17): 142-143.

Zhang T. Analysis and method evaluation from the results of proficiency testing of gold and silver content in ores[J]. Technology Innovation and Application, 2017, 7(17): 142-143.

[11]

李晓璐. 实验室间比对情况分析及效果评价[J]. 河北水利, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033

Li X L. Analysis and effect evaluation of interlaboratory comparison[J].Hebei Water Resources, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033

[12]

Carlos G, Elena C L, Joerg S, et al. Determination of tropane alkaloids in cereals, tea and herbal infusions: Exploiting proficiency testing data as a basis to derive interlaboratory performance characteristics of an improved LC-MS/MS method[J].Food Chemistry, 2020, 331: 127260. doi: 10.1016/j.foodchem.2020.127260

[13]

刘梅, 尹相余. 浅谈能力验证的选择及结果应用[J]. 中国检验检测, 2020, 28(4): 58-60.

Liu M, Yin X Y. Discussion on the selection and result application of proficiency testing[J]. China Inspection Body & Laboratory, 2020, 28(4): 58-60.

[14]

庞喜斌, 李寅彦, 唐凌天, 等. 从能力验证结果看我国土壤重金属元素检测情况[J]. 冶金分析, 2019, 39(12): 38-42.

Pang X B, Li Y Y, Tang L T, et al. Viewing the detection of heavy metals in soil in China from the results of proficiency testing[J]. Metallurgical Analysis, 2019, 39(12): 38-42.

[15]

姜瀛洲, 王忠, 陈迪, 等. 稳健统计方法崩溃点对能力验证结果评价的影响[J]. 质量与认证, 2018, 12(1): 49-52.

Jiang Y Z, Wang Z, Chen D, et al. Impact of collapse point of robust statistical methods on evaluation of proficiency testing results[J]. China Quality Certification, 2018, 12(1): 49-52.

[16]

刘攀. 主成分分析方法在煤灰特性分析能力验证结果综合评价中的应用[J]. 分析仪器, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015

Liu P. Comprehensive evaluation of proficiency testing results for characteristics analysis of coal ash based on principle component analysis method[J].Analytical Instrumentation, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015

[17]

Metody K, Nikolaya V, Olga V, et al. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 119: 76-82. doi: 10.1016/j.sab.2016.03.011

[18]

毛燕. 四分位法和迭代法对数据分散的能力验证检测数据统计分析结果的比较[J]. 冶金分析, 2016, 36(5): 76-80.

Mao Y. Statistical analysis results comparison of quartile and iteration used in proficiency testing for data dispersion inspection[J]. Metallurgical Analysis, 2016, 36(5): 76-80.

[19]

高文工, 白伟东, 郭娟, 等. 中低合金钢化学成分能力验证样品制备及均匀性检验流程探讨[J]. 冶金分析, 2019, 39(1): 77-81.

Gao W G, Bai W D, Guo J, et al. Preparation of middle-low alloy steel chemical composition sample for proficiency testing and discussion on homogeneity test procedures[J]. Metallurgical Analysis, 2019, 39(1): 77-81.

[20]

甘露, 罗代洪, 吴淑琪, 等. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因[J]. 岩矿测试, 2015, 34(1): 111-116.

Gan L, Luo D H, Wu S Q, et al. Evaluation of the analytical results of tungsten and tine ores in the proficiency testing program[J]. Rock and Mineral Analysis, 2015, 34(1): 111-116.

[21]

蒋宗莉, 郑超, 吴丽慧, 等. 应对实验室能力验证活动探讨[J]. 环境保护与循环经济, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018

Jiang Z L, Zheng C, Wu L H, et al. Discussion on coping with laboratory proficiency testing activities[J].Environmental Protection and Circular Economy, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018

[22]

臧慕文,柯瑞华. 成分分析中的数理统计及不确定度评定概要[M] . 北京: 中国质检出版社&中国标准出版社, 2012

Zang M W,Ke R H. Summary of mathematical statistics and uncertainty evaluation in component analysis[M] . Beijing: China Quality Inspection Press & China Standard Press, 2012
[23]

马捷,关淑君,茅祖兴. 能力验证及其结果处理与评价[M] . 北京: 中国质检出版社&中国标准出版社, 2016

Ma J,Guan S J,Mao Z X. Processing and evaluation of proficiency testing and its results[M] . Beijing: China Quality Inspection Press & China Standard Press, 2016
[24]

吕庆成, 任利华, 栾雪枫, 等. 自动电位滴定法测定铜精矿中的铜[J]. 冶金与材料, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040

Lv Q C, Ren L H, Luan X F, et al. Determination of copper in copper concentrate by automatic potentiometric titration[J].Metallurgy and Materials, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040

[25]

赵财昌. X射线荧光光谱法在铜精矿元素测定中的应用分析[J]. 当代化工研究, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089

Zhao C C. Application analysis of X-ray fluorescence spectrometry in elements determination of copper concentrate[J].Modern Chemical Research, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089

[26]

颜立新, 刘金优, 杨琛, 等. 铜精矿中铜的电解重量法测定及其与碘量法测定的比较[J]. 中国无机分析化学, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008

Yan L X, Liu J Y, Yang C, et al. Determination of copper content in copper concentrates by electro gravimetric method and its comparison with iodometric method[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008

[27]

张艳, 郝辉, 雒虹, 等. 电感耦合等离子体质谱(ICP-MS)法测定矿石中的铼——三种前处理方法比较[J]. 中国无机分析化学, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009

Zhang Y, Hao H, Luo H, et al. Comparison of three sample pretreatment methods in determination of rhenium in ores by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009

[28]

雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-330.

Lei Z C, Han S Q T, Jiang C J, et al. Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-330.

[29]

姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1031-1034.

Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and separation using ion exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1031-1034.

[30]

门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-60.

Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-60.

[31]

石岭. ICP-AES法测定铜精矿中铅含量[J]. 新疆有色金属, 2019, 28(2): 97-98.

Shi L. Determination of lead in copper concentrate by inductively coupled plasma atomic emission spectrometry[J].Xinjiang Nonferrous Metals, 2019, 28(2): 97-98.

相似文献(共20条)

[1]

甘露, 罗代洪, 吴淑琪. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因. 岩矿测试, 2015, 34(1): 111-117. doi: 10.15898/j.cnki.11-2131/td.2015.01.015

[2]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[3]

肖承坤. 硫酸肼还原-钒酸铵滴定法测定尾矿中钼. 岩矿测试, 2007, 26(3): 243-244.

[4]

徐卫东, 孙 荣, 朱霞萍, 刘平辉. 亚钛还原钒酸铵微量滴定法测定矿石中微量铀方法的改进. 岩矿测试, 2010, 29(3): 325-327.

[5]

王建琴, 王劲榕. 铜精矿中铅锌的连续测定. 岩矿测试, 2000, (4): 295-297.

[6]

杨理勤, 穆新华, 郑振云. 常量金标准物质定值中离群值的统计识别. 岩矿测试, 2013, 32(3): 483-486.

[7]

甘露, 王苏明, 吴晓军. 砂质土壤组分检测能力验证结果分析. 岩矿测试, 2007, 26(5): 409-412.

[8]

陈昌俊, 马红岩, 胡海明, 陈彦侠, 吴世平. 微波炉消解原子吸收法测定铜精矿中多元素. 岩矿测试, 1993, (1): 28-30.

[9]

毛文剑, 梁云生, 杨毅. 硫酸亚铁铵滴定法快速测定铬铁矿中铬. 岩矿测试, 2007, 26(1): 73-74.

[10]

范斌. 交流示波极谱滴定法测定硅酸盐岩石中的钛. 岩矿测试, 1992, (4): 358-358.

[11]

陈少鸿, 王谦, 陈建国, 应晓浒. 铜精矿样品的氧化条件及其机理探讨. 岩矿测试, 2005, (1): 47-50.

[12]

陈法荣. X—射线荧光光谱分析铜精矿中的铜和铁. 岩矿测试, 1989, (2): 145-146.

[13]

胡小云, 蔡泓. 阴离子交换柱分离—火焰原子吸收法测定铜精矿中微量金. 岩矿测试, 1999, (1): 65-68.

[14]

江水英, 吴波, 秦云和, 肖化云, 吴声东. 火试金法测定铜精矿中金含量结果的不确定度评定. 岩矿测试, 2008, 27(4): 299-301.

[15]

王巧玲, 朱明达, 耿刚强, 宁国东, 于明. 火焰原子吸收光谱法测定铜精矿中银含量的测量不确定度评定. 岩矿测试, 2007, 26(6): 477-480.

[16]

田琼, 黄健, 钟志光, 陈广文, 曲强, 洪武兴. 波长色散X射线荧光光谱法测定铜精矿中铜铅锌硫镁砷. 岩矿测试, 2009, 28(4): 382-384.

[17]

燕娜, 赵生国, 赵伟, 郑红文. 微波消解-电感耦合等离子体质谱测定铜精矿中7种稀有金属元素. 岩矿测试, 2014, 33(2): 197-202.

[18]

胡德新, 谷松海, 任海, 马德起, 杨丽飞, 苏明跃. D290树脂-活性炭吸附富集电感耦合等离子体质谱法测定铜精矿中铂钯. 岩矿测试, 2013, 32(4): 572-575.

[19]

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

[20]

崔翔, 刘顺琼, 陈永欣, 谢毓群, 吕泽娥. 电感耦合等离子体发射光谱法测定铜精矿中银砷铅锌. 岩矿测试, 2007, 26(6): 497-499.

计量
  • PDF下载量(2)
  • 文章访问量(995)
  • HTML全文浏览量(37)
  • 被引次数(0)
目录

Figures And Tables

铜精矿化学成分分析实验室间比对结果评价和离群值原因分析

周成英, 刘美子, 张华, 李宝城, 满旭光, 刘英, 臧慕文