【引用本文】 刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014
LIU Yu-chun, LIN Qing-wen, MA Ling, et al. Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014

粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化

安徽省地质实验研究所, 安徽 合肥 230001

收稿日期: 2018-01-30  修回日期: 2018-07-30  接受日期: 2018-08-10

基金项目: 安徽省国土资源科技项目“安徽省地球化学调查土壤、水系沉积物标准物质研制”(2016-k-17)

作者简介: 刘玉纯, 高级工程师, 长期从事化学分析工作。E-mail:1810597408@qq.com

Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation

Institute of Geological Experiment of Anhui Province, Hefei 230001, China

Received Date: 2018-01-30
Revised Date: 2018-07-30
Accepted Date: 2018-08-10

摘要:在X射线荧光光谱(XRF)分析中,粉末压片制样是被广泛应用的一种制样方法,但由于存在样品粒度、矿物和基体效应对其测量条件进行优化。本文应用XRF法测量地球化学调查样品中24种主次量元素,综合优化了制样压力、仪器工作电压和工作电流、待测元素分析谱线、探测器的调节和探测效率等实验条件。在最优测量条件下,用土壤和水系沉积物国家标准物质GBW07402、GBW07404、GBW07424、GBW07426、GBW07429验证方法的准确度,结果表明个别元素如GBW07402中的Na2O、GBW07404中的Pb相对误差大于10%,其余元素的相对误差小于10%,但均达到了地球化学调查样品的质量监控要求。经优化的仪器测量条件为我国地球化学调查样品提供了可靠的基础数据。

关键词: 地球化学调查样品, X射线荧光光谱法, 分析谱线, 探测器

要点

(1) 确定了地球化学调查样品XRF分析的最优测量方案。

(2) 证明了本方法的准确度达到了地球化学调查样品质量监控要求。

(3) 为制定区域地球化学调查样品分析的地方标准提供了基础数据。

Optimization of Measurement Conditions for Geochemical Survey Sample Analysis by X-ray Fluorescence Spectrometry with Pressed Powder Pellet Sample Preparation

ABSTRACT

BACKGROUND:

Powder compaction is a widely used sample preparation method for X-ray Fluorescence Spectrometry. However, due to the existence of mineral and matrix effects, the measurement conditions should be optimized.

OBJECTIVES:

To measure 24 major and minor elements in geochemical survey samples.

METHODS:

The ZSX Primus Ⅱ type Wavelength Dispersive X-ray Fluorescence Spectrometer was used to determine the optimum experimental conditions, such as sample preparation pressure, working voltage and current of the instrument, spectral lines of the elements to be measured and the efficiency of the detector. The optimum experimental conditions were verified by analyzing the National Standard Materials (GBW07402, GBW07404, GBW07424, GBW07426, and GBW07429).

RESULTS:

According to the optimum experimental conditions, the National Standard Materials of soil and stream sediments are analyzed. Individual elements such as Na2O in GBW07402 and Pb in GBW07404 have relative errors greater than 10%, and other elements have relative errors less than 10%. The relative errors meet the quality control requirements of geochemical survey samples.

CONCLUSIONS:

The requirement of data quality monitoring has been achieved for the analysis of geochemical survey samples and the optimized instrument measurement conditions provide reliable basic data for such samples in China.

KEY WORDS: geochemical survey samples, X-ray Fluorescence Spectrometry, analytical spectral lines, detector

HIGHLIGHTS

(1) The optimal measurement scheme was established for XRF determination of geochemical survey samples.

(2) The accuracy of the method was proved to meet the quality control requirements of geochemical survey samples.

(3) The method provided basic data for formulating the local standard on analysis of regional geochemical survey samples.

本文参考文献

[1]

Owoade O K, Olise F S, Olaniyi H B, et al. Model esti-mated uncertainties in the calibration of a total reflection X-ray fluorescence spectrometer using single-element standards[J].X-Ray Spectrometry, 2010, 35(4): 249-252.

[2]

Manninen S. Compton scattering:Present status and fu-ture[J].Journal of Physics and Chemistry of Solids, 2000, 61(3): 335-340. doi: 10.1016/S0022-3697(99)00312-1

[3]

Nie H, Chettle D, Stronach I, et al. A study of MDL improvement for the in vivo measurement of lead in bone[J].Nuclear Instruments and Methods in Physics Research, 2004, 213: 579-583. doi: 10.1016/S0168-583X(03)01675-6

[4]

于波, 严志远, 杨乐山, 等. X射线荧光光谱法测定土壤和水系沉积物中碳和氮等36个主次痕量元素[J]. 岩矿测试, 2006, 25(1): 74-78. doi: 10.3969/j.issn.0254-5357.2006.01.018

Yu B, Yan Z Y, Yang L S, et al. Determination of 36 major, minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2006, 25(1): 74-78. doi: 10.3969/j.issn.0254-5357.2006.01.018

[5]

徐海, 刘琦, 王龙山, 等. X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分[J]. 岩矿测试, 2007, 26(6): 490-492. doi: 10.3969/j.issn.0254-5357.2007.06.014

Xu H, Liu Q, Wang L S, et al. Determination of 31 components in soil samples by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2007, 26(6): 490-492. doi: 10.3969/j.issn.0254-5357.2007.06.014

[6]

张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分[J]. 岩矿测试, 2004, 23(1): 19-24. doi: 10.3969/j.issn.0254-5357.2004.01.005

Zhang Q, Fan S Z, Pan Y S, et al. Determination of 25 major, minor and trace elements in geochemical exploration samples by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2004, 23(1): 19-24. doi: 10.3969/j.issn.0254-5357.2004.01.005

[7]

Luo L, Chettle D R, Nie H, et al. Curve fitting using a genetic algorithm for the X-ray fluorescence measurement of lead in bone[J].Journal of Radioanalytical and Nuclear Chemistry, 2006, 269(2): 325-329. doi: 10.1007/s10967-006-0386-0

[8]

岩石矿物分析编委会. 岩石矿物分析)[M] (第四版 第一分册) . 北京: 地质出版社, 2011: 605-622.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis[M] (Fourth Edition:VolumeⅠ) . Beijing: Geological Publishing House, 2011: 605-622.
[9]

王祎亚, 詹秀春, 樊兴涛, 等. 粉末压片-X射线荧光光谱法测定地质样品中痕量硫的矿物效应佐证实验及其应用[J]. 冶金分析, 2010, 30(1): 7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002

Wang Y Y, Zhan X C, Fan X T, et al. Experimental evidence of mineralogical effects on the determination of trace sulfur in geological samples by X-ray fluorescence spectrometry with pressed powder pellet sample preparation and its application[J].Metallurgical Analysis, 2010, 30(1): 7-11. doi: 10.3969/j.issn.1000-7571.2010.01.002

[10]

王晓红, 何红蓼, 王毅民, 等. 超细样品的地质分析应用[J]. 分析测试学报, 2010, 29(6): 578-583.

Wang X H, He H L, Wang Y M, et al. Geological techniques using ultrafine samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 578-583.

[11]

陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91-98.

Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98.

[12]

郑存江. 地质标准物质不确定度评估方法初探[J]. 岩矿测试, 2005, 24(4): 284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010

Zheng C J. Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis, 2005, 24(4): 284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010

[13]

张荣, 张玉钧, 章炜, 等. 土壤重金属铅元素的X射线荧光光谱测量分析[J]. 光谱学与光谱分析, 2013, 33(2): 554-557. doi: 10.3964/j.issn.1000-0593(2013)02-0554-04

Zhang R, Zhang Y J, Zhang W, et al. Spectrometry and analysis of lead in soil using X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(2): 554-557. doi: 10.3964/j.issn.1000-0593(2013)02-0554-04

[14]

Rousseau R M. Corrections for matrix effects in X-ray fluorescence analysis-A tutorial[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(7): 759-777. doi: 10.1016/j.sab.2006.06.014

[15]

胡波, 武晓梅, 余韬, 等. X射线荧光光谱仪的发展及应用[J]. 核电子学与探测技术, 2015, (7): 695-702. doi: 10.3969/j.issn.0258-0934.2015.07.012

Hu B, Wu X M, Yu T, et al. The development and application of X-ray fluorescence spectrometer[J].Nuclear Electronics and Detection Technology, 2015, (7): 695-702. doi: 10.3969/j.issn.0258-0934.2015.07.012

[16]

周国兴, 赵恩好, 岳明新, 等. X射线荧光光谱仪及其分析技术的发展[J]. 当代化工, 2013, (8): 1169-1172. doi: 10.3969/j.issn.1671-0460.2013.08.047

Zhou G X, Zhao E H, Yue M X, et al. Development of X-ray fluorescence spectrometer and its analysis technology[J].Contemporary Chemical Industry, 2013, (8): 1169-1172. doi: 10.3969/j.issn.1671-0460.2013.08.047

[17]

罗立强,詹秀春,李国会. X射线荧光光谱仪[M] . 北京: 化学出版社, 2008: 162-165.

Luo L Q,Zhan X C,Li G H. X-ray Fluorescence Spectrometer[M] . Beijing: Chemical Industry Press, 2008: 162-165.

相似文献(共20条)

[1]

刘平, 杨军红. 数字化技术在铁基合金铬元素可见光谱分析中的应用. 岩矿测试, 2008, 27(1): 33-36.

[2]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[3]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[4]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[5]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[6]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[7]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[8]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[9]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[10]

吴红旗. ARL9400型X荧光光谱仪探测器高压部分故障分析与维修. 岩矿测试, 2003, (4): 307-309.

[11]

孙大泽, 梁宝鎏. 在厚靶分析中外标法的表面形状校正. 岩矿测试, 2003, (1): 10-14.

[12]

陈静, 高志军, 陈冲科, 刘延霞, 张明炜. X射线荧光光谱法分析地质样品的应用技巧. 岩矿测试, 2015, 34(1): 91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

[13]

付永立, 程文翠, 张兆法, 魏利, 孙孟华, 庞雪敏. 多仪器协同-X射线荧光光谱法在区域地球化学调查分析中的应用评价. 岩矿测试, 2017, 36(5): 495-500. doi: 10.15898/j.cnki.11-2131/td.201703070028

[14]

陈永君, 王苏明, 许春雪, 樊兴涛, 王亚平. 少量树木年轮样品的X射线荧光光谱分析. 岩矿测试, 2006, 25(4): 315-318.

[15]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[16]

, 梁国立, 马光祖. 参加第49届丹佛X射线年会有感. 岩矿测试, 2001, (1): 55-56.

[17]

燕娜, 赵小龙, 赵生国, 郑红文. 红土镍矿样品前处理方法和分析测定技术研究进展. 岩矿测试, 2015, 34(1): 1-11. doi: 10.15898/j.cnki.11-2131/td.2015.01.001

[18]

李国会, 徐国令, 李晓莉. X射线荧光光谱法在耐火材料成分分析中的应用. 岩矿测试, 2003, (3): 217-220224.

[19]

曾江萍, 吴磊, 李小莉, 王娜, 张莉娟. 较低稀释比熔融制样X射线荧光光谱法分析铬铁矿. 岩矿测试, 2013, 32(6): 915-919.

[20]

刘玉纯, 胡浩, 梁述廷. X射线荧光光谱法同时测定土壤样品中碳氮等多元素. 岩矿测试, 2004, (2): 102-108.

计量
  • PDF下载量(15)
  • 文章访问量(54)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化

刘玉纯, 林庆文, 马玲, 梁述廷