【引用本文】 郭东旭, 刘晓, 张海兰, 等. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征[J]. 岩矿测试, 2021, 40(5): 698-709. doi: 10.15898/j.cnki.11-2131/td.202005060002
GUO Dong-xu, LIU Xiao, ZHANG Hai-lan, et al. The Infrared Spectroscopy Characteristics of Alteration and Mineralizationin the Porphyry Copper Deposit in Pulang, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(5): 698-709. doi: 10.15898/j.cnki.11-2131/td.202005060002

基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征

自然资源实物地质资料中心, 河北 三河 065201

收稿日期: 2020-05-06  修回日期: 2020-08-05  接受日期: 2021-06-02

基金项目: 中国地质调查局地质调查项目"实物地质资料汇集与服务"(DD20190411)

作者简介: 郭东旭, 硕士, 助理工程师, 研究方向为矿物学、岩石学、矿床学。E-mail: gdx2016@163.com

The Infrared Spectroscopy Characteristics of Alteration and Mineralizationin the Porphyry Copper Deposit in Pulang, Yunnan Province

Core and Samples Centre of Land and Resources, Sanhe 065201, China

Received Date: 2020-05-06
Revised Date: 2020-08-05
Accepted Date: 2021-06-02

摘要:近年来红外光谱技术作为一种绿色、快速、无损、精确探测矿物的技术手段而倍受关注,针对斑岩型矿床蚀变矿物高度叠加、蚀变分带界线不明显、细粒蚀变矿物多、黏土蚀变矿物多等特征,该技术在蚀变矿物识别和勘探信息解读等方面优势突出。本文应用红外光谱技术对云南普朗斑岩铜矿区钻孔ZK1801岩心进行矿物识别和蚀变分带划分的研究,识别出钾硅酸盐化带、绿帘石-绿泥石化带、绿泥石-伊利石化带、石英-伊利石化带和泥化带。研究表明:普朗铜矿整个钻孔的蚀变矿物主要有石英、钾长石、绢云母、绿泥石、绿帘石、高岭石、蒙脱石、伊利石等;根据矿化特征,发现铜矿体广泛赋存在钾硅酸盐化带和绿帘石-绿泥石化带中,与矿化关系密切的蚀变矿物“石英+钾长石+绢云母”和“绿帘石+绿泥石”,可以作为普朗矿床勘查的标型蚀变矿物组合;研究区广泛发育的绢云母Al—OH波长随钻孔深度增加而逐渐从2210~2205nm减小到2202~2198nm,Al—OH波长2210~2205nm(长波绢云母)与矿化关系密切,可以作为普朗矿床勘查的指示信息。

关键词: 红外光谱, 蚀变矿物, 蚀变分带, 钾硅酸盐化, 绿帘石-绿泥石化, 斑岩铜矿, 普朗

要点

(1) 样品处理过程须遵守两个基本原则:不引入待测元素以及可能会对待测元素同位素分析产生干扰的元素;待测元素不发生损失。

(2) 金属同位素分析常用的样品消解方法是酸溶法,包括高压闷罐法和微波消解法。

(3) 离子交换分离前必须彻底去除消解时加入的高氯酸。

(4) 相同体积的树脂放入越细越长的树脂柱中,待测元素洗脱出来越滞后。

The Infrared Spectroscopy Characteristics of Alteration and Mineralizationin the Porphyry Copper Deposit in Pulang, Yunnan Province

ABSTRACT

BACKGROUND:

Infrared spectroscopy technology, as a green, fast, non-destructive and accurate mineral detection technology, has drawn widespread attention of geologists all over the world in recent years. In view of the high superposition of altered minerals in porphyry deposits, the inconspicuous alteration zone boundaries, many fine-grain altered minerals, and clay altered minerals, this technology has outstanding advantages in the identification of altered minerals and interpretation of exploration information.

OBJECTIVES:

To analyze the characteristics of alteration and mineralization of the porphyry copper deposit in Pulang, Yunnan Province, and to provide the basis theory for porphyry copper deposits (especially in the Pulang deposit) exploration.

METHODS:

The core samples in the drill ZK1801 were detected using HyLogger-3 through infrared spectroscopy technology, and the spectral data was processed and analyzed by TSG 8.0.

RESULTS:

K-silicate alteration, epidote-chlorite alteration, chlorite-illite alteration, quartz-illite alteration and clay alteration were identified in the Pulang porphyry copper deposit. The main altered minerals included quartz, potassium feldspar, sericite, chlorite, epidote, kaolinite, smectite and illite. According to the characteristics of mineralization, it was found that copper ore bodies were widely present in the potassium silicate zone and epidote-chlorite zone.

CONCLUSIONS:

Quartz+potash, feldspar+sericite and epdote+chlorite can be typical altered mineral assemblages for exploration of the Pulang porphyry copper deposit. The Al-OH wavelength from 2210nm to 2205nm of sericite (long-wave sericite) is closely related to mineralization, which can be used as an indicator for prospecting in the Pulang deposit.

KEY WORDS: infrared spectroscopy, alteration minerals, alteration zonation, K-silicate alteration, chlorite-chlorite alteration, porphyry copper deposit, Pulang

HIGHLIGHTS

(1) In order to obtain accurate and precise metal isotopes data, two principles must be followed.No analyzed and interfering elements to be introduced; and no loss of analyzed elements.

(2) Acid dissolution method (including Teflon bombs and microwave digestion) is a common technique for metal isotope analysis.

(3) HClO4 must be removed thoroughly at high temperature during sample digestion, because its strong oxidization will destroy the effectiveness of resins.

(4) When the same volume of resin is put into the column, the thinner the column is, the slower the flow rate of the eluent.

本文参考文献

[1]

Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515

[2]

Sillitoe R H. Porphyry-copper systems[J].Economic Geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3

[3]

刘新星, 张弘, 张娟, 等. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征[J]. 岩矿测试, 2021, 40(1): 121-133.

Liu X X, Zhang H, Zhang J, et al. A study on alteration mineral assemblages and mineralization characteristics of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia, China, based on infrared spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133.

[4]

杨志明, 侯增谦, 杨竹森, 等. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 2012, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004

Yang Z M, Hou Z Q, Yang Z S, et al. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet[J].Mineral Deposits, 2012, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004

[5]

田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J]. 地球科学, 2019, 44(6): 2143-2154.

Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposit: A review[J]. Earth Science, 2019, 44(6): 2143-2154.

[6]

Clark R N, Swayze G A, Livo K E, et al. Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems[J]. Journal of Geophysical Research, 2003, 108(E12): 5131.

[7]

代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J].Acta Geoscientica Sinica, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

[8]

Tappert M C, Rivard B, Giles D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J].Ore Geology Reviews, 2013, 53: 26-38. doi: 10.1016/j.oregeorev.2012.12.006

[9]

Neal L C, Wilkinson J J, Mason P J, et al. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits[J].Journal of Geochemical Exploration, 2018, 184: 179-198. doi: 10.1016/j.gexplo.2017.10.019

[10]

Duuring P, Hassan L, Zelic M, et al. Geochemical and spectral footprint of metamorphosed and deformed VMS-style mineralization in the Quinns District, Yilgarn Craton, western Australia[J].Economic Geology, 2016, 111: 1411-1438. doi: 10.2113/econgeo.111.6.1411

[11]

连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 2005, 24(6): 621-636.

Lian C Y, Zhang G, Yuan C H, et al. Application of SWIR reflectance spectral in mapping hydrothermal alteration minerals: A case study of the Tuwu porphyry copper prospect, Xinjiang[J]. Geology in China, 2005, 24(6): 621-636.

[12]

连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6): 621-636. doi: 10.3969/j.issn.0258-7106.2005.06.006

Lian C Y, Zhang G, Yuan C H, et al. Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district, Yunnan Province[J].Deposit Geology, 2005, 24(6): 621-636. doi: 10.3969/j.issn.0258-7106.2005.06.006

[13]

郭娜, 史维鑫, 黄一入, 等. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457.

Guo N, Shi W X, Huang Y R, et al. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2-3): 446-457.

[14]

Guo N, Cudahy T, Tang J X, et al. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry[J].Ore Geology Reviews, 2019, 108: 147-157. doi: 10.1016/j.oregeorev.2017.07.027

[15]

陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04

Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J].Acta Petrologica Sinica, 2019, 35(12): 3629-3643. doi: 10.18654/1000-0569/2019.12.04

[16]

陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953.

Chen K, Ji G X, Zhu Y F, et al. Hyperspectral core scanning system analysis alteration characteristics of Chengmenshan Tielukan copper deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953.

[17]

郭娜, 黄一入, 郑龙, 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例[J]. 地球学报, 2017, 38(5): 767-778.

Guo N, Huang Y R, Zheng L, et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits[J]. Acta Geoscientica Sinica, 2017, 38(5): 767-778.

[18]

黄一入, 郭娜, 郑龙, 等. 基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J]. 地球学报, 2017, 38(5): 779-789.

Huang Y R, Guo N, Zheng L, et al. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study of the Sinongduo low-sulfidation epithermal deposit[J]. Acta Geoscientica Sinica, 2017, 38(5): 779-789.

[19]

郭娜, 刘栋, 唐菊兴, 等. 基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J]. 矿床地质, 2018, 37(3): 556-570.

Guo N, Liu D, Tang J X, et al. Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example[J]. Mineral Deposits, 2018, 37(3): 556-570.

[20]

郭娜, 郭文铂, 刘栋, 等. 冈底斯成矿带陆相火山岩区浅成低温热液矿床蚀变分带模型——以西藏斯弄多矿床为例[J]. 岩石学报, 2019, 35(3): 833-848.

Guo N, Guo W B, Liu D, et al. Alteration zoning model associated with Tibetan Sinongduo epithermal deposit, the continental volcanic areas of Gangdise metallogenic belt[J]. Acta Petrologica Sinica, 2019, 35(3): 833-848.

[21]

代晶晶, 王登红, 代鸿章, 等. 川西甲基卡锂矿基地典型岩石及矿物反射波谱特征研究[J]. 岩矿测试, 2018, 37(5): 507-517.

Dai J J, Wang D H, Dai H Z, et al. Reflectance spectral characteristics of rocks and minerals in Jiajika lithium deposits in West Sichuan[J]. Rock and Mineral Analysis, 2018, 37(5): 507-517.

[22]

易锦俊. 闽西南马坑铁矿成因机制与找矿模式研究[D]. 北京: 中国地质大学(北京), 2018.

Yi J J. Study on the genetic mechanism and prospecting model of Makeng iron deposit in southwest Fujian[D]. Beijing: China University of Geosciences (Beijing), 2018.

[23]

史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943.

Shi W X, Yi J J, Wang H, et al. Study on the characteristics of infrared spectrum and the alteration zoning law of drill core in Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943.

[24]

回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134-144.

Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134-144.

[25]

张国亮. 新疆北山地区与云南普朗铜矿高光谱岩矿信息提取研究[D]. 长春: 吉林大学, 2017.

Zhang G L. Research on extraction of rocks and minerals information from hyperspectral data in Beishan area of Xinjiang and Pulang copper deposit of Yunnan[D]. Changchun: Jilin University, 2017.

[26]

石洪召, 范文玉, 胡志中, 等. 滇西北普朗铜矿床高钾中-酸性侵入岩年代学及其地质意义[J]. 地球科学, 2018, 43(8): 2600-2613.

Shi H Z, Fan W Y, Hu Z Z, et al. Geochronology and geological significance of the Pulang high-K intermediate-acid intrusive rocks in the Zhongdian area, northwest Yunnan Province[J]. Earth Science, 2018, 43(8): 2600-2613.

[27]

陈玲, 潘磊, 黄丰, 等. 云南普朗超大型斑岩铜矿床岩浆混合作用: 熔融包裹体证据[J]. 大地构造与成矿学, 2018, 42(5): 880-892.

Chen L, Pan L, Huang F, et al. Magma mixing in the giant Pulang porphyry copper deposit, Yunnan Province: Evidence from melt inclusions[J]. Geotectonica Et Metallogenia, 2018, 42(5): 880-892.

[28]

刘旭东. 滇西北普朗斑岩铜多金属矿床成矿流体演化[D]. 北京: 中国地质大学(北京), 2018.

Liu X D. The evolution of ore-forming fluid of the Pulang porphyry copper polymetallic deposit in the northwest Yunnan Province, China[D]. Beijing: China University of Geosciences (Beijing), 2018.

[29]

周晓丹, 杨帆, 吴静, 等. 云南普朗斑岩铜矿床外围东部斑岩体岩石地球化学特征研究[J]. 矿物岩石地球化学通报, 2018, 37(4): 731-740.

Zhou X D, Yang F, Wu J, et al. A study on petrological and geochemical characteristics of the porphyry bodies in the eastern periphery of the Pulang porphyry copper deposit, Yunnan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 731-740.

[30]

邢凯, 舒启海, 赵鹤森, 等. 滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义[J]. 岩石学报, 2018, 34(5): 1427-1440.

Xing K, Shu Q H, Zhao H S, et al. Geochemical characteristics and geological significance of apatites in the Pulang porphyry copper deposit, NW Yunnan Province[J]. Acta Petrologica Sinica, 2018, 34(5): 1427-1440.

[31]

冯乾, 黄明亮, 胥磊落, 等. 锆石和磷灰石原位地球化学成分对普朗斑岩铜成矿的指示意义[J]. 矿物学报, 2019, 39(6): 681-689.

Feng Q, Huang M L, Xu L L, et al. In situ geochemical compositions of the zircon and apatite and their implications for the Pulang porphyry Cu mineralization[J]. Acta Mineralogica Sinica, 2019, 39(6): 681-689.

[32]

李华伟, 董国臣, 董朋生, 等. 滇西北中甸弧成矿岩体中榍石化学成分特征及其成岩成矿标识[J]. 地球科学, 2020, 45(6): 1999-2010.

Li H W, Dong G C, Dong P S, et al. Titanite chemical compositions and their implications for petrogenesis and mineralization in the Zhongdian Arc, NW Yunnan, China[J]. Earth Science, 2020, 45(6): 1999-2010.

[33]

杨镇. 义敦岛弧晚三叠世斑岩铜矿成矿作用[D]. 北京: 中国地质大学(北京), 2017.

Yang Z. Late Triassic mineralization of the porphyry copper deposits in Yidun Arc, southwest China[D]. Beijing: China University of Geosciences (Beijing), 2017.

[34]

王国强, 和翠英, 羊劲松, 等. 滇西普朗矿区北矿段及外围成矿条件及找矿标志[J]. 现代矿业, 2018, 34(7): 27-31. doi: 10.3969/j.issn.1674-6082.2018.07.007

Wang G Q, He C Y, Yang J S, et al. Metallogenic conditions prospecting criteria of the northern ore-section and periphery of Pulang mining area in western Yunnan Province[J].Modern Mining, 2018, 34(7): 27-31. doi: 10.3969/j.issn.1674-6082.2018.07.007

[35]

Cao K, Yang Z M, Mavrogenes J, et al. Geology and genesis of the giant Pulang porphyry Cu-Au district, Yunnan, southwest China[J]. Economic Geology, 2019, 114(2): 1-100.

[36]

Li W K, Yang Z M, Cao K, et al. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 2019, 174(12): 1-34.

[37]

李芙蓉. 云南普朗矿区北部Ⅲ号斑岩体的岩石学及年代学研究[D]. 昆明: 昆明理工大学, 2018.

Li F R. Study on the petrology and chronology of No. Ⅲ porphyry body in the north of Pulang, Yunnan Province[D]. Kunming: Kunming University of Science and Technology, 2018.

[38]

汪重午, 郭娜, 郭科, 等. 基于短波红外技术的斑岩-矽卡岩型矿床中绿泥石蚀变分布特征研究: 以西藏甲玛铜多金属矿为例[J]. 地质与勘探, 2014, 50(6): 1137-1146.

Wang C W, Guo N, Guo K, et al. Characteristics of the chlorite alteration in the porphyry-skarn deposit based on short-wave infrared technology: A case study of the Jiama copper-polymetallic deposit in Tibet[J]. Geology and Exploration, 2014, 50(6): 1137-1146.

[39]

Wang R, Cudahy T, Laukamp C, et al. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia[J].Economic Geology, 2017, 112(5): 1153-1176. doi: 10.5382/econgeo.2017.4505

[40]

Yang K, Huntington J F, Gemmell J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J].Journal of Geochemical Exploring, 2011, 108(2): 143-156. doi: 10.1016/j.gexplo.2011.01.001

相似文献(共20条)

[1]

刘新星, 张弘, 张娟, 史维鑫, 张新乐, 成嘉伟, 卢克轩. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征. 岩矿测试, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010

[2]

赵晨辉, 王成辉, 赵如意, 刘善宝, 饶娇萍, 刘武生, 张熊, 蒋金昌, 李挺杰. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义. 岩矿测试, 2020, 39(6): 908-920. doi: 10.15898/j.cnki.11-2131/td.202007310107

[3]

史维鑫, 易锦俊, 王浩, 田荣军. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究. 岩矿测试, 2020, 39(6): 934-943. doi: 10.15898/j.cnki.11-2131/td.202005060004

[4]

陈康, 纪广轩, 朱有峰, 张华川. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

[5]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[6]

迟广成, 宋丽华, 王娜, 崔德松, 周国兴. X射线粉晶衍射仪在山东蒙阴金伯利岩蚀变矿物鉴定中的应用. 岩矿测试, 2010, 29(4): 475-477.

[7]

李天顺, 李莉萍. 红外光谱定量测定硅灰石矿中矿物含量. 岩矿测试, 1992, (3): 232-235.

[8]

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

[9]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[10]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[11]

修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 近红外光谱仪测定岩石中蚀变矿物方法研究. 岩矿测试, 2009, 28(6): 519-523.

[12]

黄文清, 金绪广, 左锐, 晁东娟, 杨桂群, 薛盼, 陈小军, 张锦雯. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

[13]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[14]

葛昌华, 梁华定, 潘富友. 2—(四氮唑偶氮)—5—二乙氨基苯甲酸的合成及光度法测定钒. 岩矿测试, 2003, (1): 40-43.

[15]

邵红, 刘相龙, 王大卫, 徐微雪. 壳聚糖和PDMDAAC改性膨润土用于处理含油废水的研究. 岩矿测试, 2014, 33(3): 431-437.

[16]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[17]

王勇, 唐菊兴, 王立强. 西藏邦铺斑岩钼(铜)矿床钾硅酸盐化热液黑云母电子探针分析及早期成矿流体特征. 岩矿测试, 2016, 35(4): 440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

[18]

富公勤. 云英岩的蚀变类型、蚀变带序和成岩格子. 岩矿测试, 1985, (2): 103-108.

[19]

吕宪俊, 范海宝, 邱俊, 张言贵, 曹旭. 胶东蚀变岩型金矿石工艺矿物学性质研究. 岩矿测试, 2012, 31(1): 184-188.

[20]

郭东旭, 刘琰, 李自静, 孙东询, 王浩. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征. 岩矿测试, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003

计量
  • PDF下载量(12)
  • 文章访问量(2630)
  • HTML全文浏览量(772)
  • 被引次数(0)
目录

Figures And Tables

基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征

郭东旭, 刘晓, 张海兰, 张志国