【引用本文】 徐青, 刘霞, 余晓平, 等. 沱江沉积物-水界面磷形态垂向分布及时空变化特征[J]. 岩矿测试, 2019, 38(6): 668-680. doi: 10.15898/j.cnki.11-2131/td.201907210110
XU Qing, LIU Xia, YU Xiao-ping, et al. Vertical Distribution of Phosphorus Species at the Sediment-Water Interface of the Tuojiang River and Its Spatial and Temporal Characteristics[J]. Rock and Mineral Analysis, 2019, 38(6): 668-680. doi: 10.15898/j.cnki.11-2131/td.201907210110

沱江沉积物-水界面磷形态垂向分布及时空变化特征

1. 

天津市海洋资源与化学重点实验室, 天津科技大学, 天津 300457

2. 

成都大学建筑与土木工程学院, 四川 成都 610106

收稿日期: 2019-07-21  修回日期: 2019-08-31  接受日期: 2019-10-21

基金项目: 国家自然科学基金项目(21773170);教育部创新团队发展计划资助项目(ITR_17R81)

作者简介: 徐青, 博士研究生, 轻工技术与工程专业。E-mail:584164750@qq.com

通信作者: 邓天龙, 教授, 博士生导师, 主要从事环境地球化学和海洋化学研究。E-mail:tldeng@tust.edu.cn

Vertical Distribution of Phosphorus Species at the Sediment-Water Interface of the Tuojiang River and Its Spatial and Temporal Characteristics

1. 

Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China

2. 

School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

Corresponding author: DENG Tian-long, tldeng@tust.edu.cn

Received Date: 2019-07-21
Revised Date: 2019-08-31
Accepted Date: 2019-10-21

摘要:水体中富营养化水平与磷元素的赋存形态密切相关。目前围绕引起富营养化关键因子之一的磷形态的垂向分布特征、各磷形态间的迁移转化行为及其影响因素取得了比较明确的研究进展。为进一步揭示不同磷形态在沉积物-水体系中迁移转化行为随时空的变化特征,本文采用磷钼蓝分光光度法对沱江流域简阳段间隙水中可溶性活性磷(SRP)、可溶性非活性磷(SUP)及总溶解性磷(TDP)进行测定;采用SMT法和改进的沉积物无机磷形态连续提取法对沉积物中总无机磷(TIP)、总磷(TP)、难提取磷(Res-P)、可交换态磷(Exc-P)、铁结合态磷(Fe-P)、铝结合态磷(Al-P)、钙结合态磷(Ca-P)进行提取,磷钼蓝分光光度法进行测定,以揭示沉积物-水体系中磷的赋存形态垂向分布行为特征,并将实验数据与十年前该地区磷的赋存形态结果进行对比,探讨磷赋存形态的变化趋势及影响因素。结果表明:间隙水中SRP、SUP和TDP的含量分别为0.004~0.36mg/L、0.080~3.19mg/L和0.056~3.28mg/L;沉积物中TP、TIP、Res-P、Exc-P、Al-P、Ca-P含量分别为1235.40~1646.94mg/kg、860.00~1318.59mg/kg、130.31~537.13mg/kg、1.35~14.10mg/kg、0.007~0.12mg/kg、743.13~1109.91mg/kg,Fe-P未检出。对比十年前后沉积物-水体系中磷赋存形态的变化可知,由于受到外源磷输入的影响,间隙水中SRP、SUP以及TDP含量虽然在-10cm以上变化不明显,但在-10cm以下明显增大,且导致沉积物中TP、TIP含量增加;偏碱性的沉积环境导致Al-P的释放,其含量明显减小;Exc-P含量的减小与其转化为稳定的Ca-P或Res-P形态有关。研究认为:随着时空的变化,沱江简阳段沉积物呈现外源磷输入和内源磷释放的综合污染。总体而言,由于输入的磷形态大部分以稳定的Ca-P和Res-P形态存在于沉积物中,使得表层间隙水中生物可直接利用的磷含量总体变化不大,该地区富营养化程度不会加重。维持沉积环境的弱碱性,有利于Al-P、Exc-P等向Ca-P的有效转换,抑制河流富营养化。

关键词: 沱江, 间隙水, 沉积物, 磷赋存形态, 垂向分布, 时空变化特征, 连续提取法, 磷钼蓝分光光度法

要点

(1) 关注了流动相的pH不同引起的保留时间和峰强度的变化。

(2) 在较宽pH值范围条件下不同形态的砷化合物均能实现有效分离。

(3) 发现了流动相pH的变化对砷形态化合物的灵敏度影响显著。

Vertical Distribution of Phosphorus Species at the Sediment-Water Interface of the Tuojiang River and Its Spatial and Temporal Characteristics

ABSTRACT

BACKGROUND:

The eutrophication level in water is related to the phosphorus species in porewater and sediment closely. At present, as the one of the eutrophic elements, the vertical distribution characteristics of phosphorus species, the transfer and transformation behavior among phosphorus species and its influencing factors have made clear research progress.

OBJECTIVES:

In order to further reveal the temporal and spatial characteristics of the transfer and transformation of different forms of phosphorus in porewaters and sediments, and assess the ecological restoration in the area by analyzing the soluble reactive phosphorus (SRP), soluble unreactive phosphorus (SUP) and total dissolved phosphorus (TDP) in porewaters, and by analyzing total inorganic phosphorus (TIP), total phosphorus (TP), residual phosphorus (Res-P), exchangeable phosphorus (Exc-P), Fe-bound phosphorus(Fe-P), Al-bound phosphorus (Al-P) and Ca-bound phosphorus (Ca-P) in sediments in Jianyang section of Tuojiang River. And the results were compared with the records of phosphorus species in the same place ten years ago to discuss the change trend and influencing factors of phosphorus occurrence.

METHODS:

SRP, SUP and TDP in porewaters were determined by phosphomolybdate blue spectrophotometry. TIP, TP, Res-P, Exc-P, Fe-P, Al-P and Ca-P in sediments were extracted by SMT method and the improved sequential extraction method. The concentration of the phosphorus species were determined by phosphomolybdate blue spectrophotometry.

RESULTS:

The content of SRP, SUP and TDP in porewaters ranged from 0.004 to 0.36mg/L, 0.080 to 3.19mg/L and 0.056 to 3.28mg/L, respectively. The content of TP, TIP, Res-P, Exc-P, Al-P and Ca-P in sediment ranged from 1235.40 to 1646.94mg/kg, 860.00 to 1318.59mg/kg, 130.31 to 537.13mg/kg, 1.35 to 14.10mg/kg, 0.007 to 0.12mg/kg and 743.13 to 1109.91mg/kg, respectively. However, Fe-P in the sediment samples were not detected. Compared with the results of phosphorus species in sediment-water system ten years ago, it was found that although the content of SRP, SUP and TDP in porewaters were not significantly changed above -10cm, but they increased below -10cm due to the influence of exogenous phosphorus input, which also led to the increase of TP and TIP in sediments. The weak alkaline environment resulted in the release of Al-P, and the decrease of Exc-P was related to its transformation into stable forms of Ca-P or Res-P.

CONCLUSIONS:

The sediment in Jianyang section of Tuojiang River presents the comprehensive pollution of exogenous input and endogenous release. Generally speaking, because most of the input phosphorus exist in the forms of stable Ca-P and Res-P in sediments finally, the part of phosphorus which can be directly used by organisms in the sediment-water interface has little changed. So the eutrophication degree in this area has not increased with the change of time and space. To maintain the weak alkalinity of the sedimentary environment is conducive to the effective conversion of Al-P and Exc-P to Ca-P, and to inhibit the river eutrophication.

KEY WORDS: Tuojiang River, interstitial water, sediment, phosphorus species, vertical distribution, temporal and spatial characteristics, sequential extraction method, phosphormolybdate blue spectrophotometry

HIGHLIGHTS

(1) The changes of retention time and peak strength caused by different pH of flow eluent were studied.

(2) Different arsenic species could be effectively separated within a wide pH range.

(3) The pH of the eluent had significant effect on the sensitivity of arsenic species.

本文参考文献

[1]

Feng W Y, Wu F C, He Z Q, et al. Simulated bioav-ailability of phosphorus from aquatic macrophytes and phytoplankton by aqueous suspension and incubation with alkaline phosphatase[J].Science of the Total Environment, 2018, 616-617: 1431-1439. doi: 10.1016/j.scitotenv.2017.10.172

[2]

Li Y, Wang H Z, Liang X M, et al. Total phytoplankton abundance is determined by phosphorus input:Evidence from an 18-month fertilization experiment in four subtropical ponds[J].Canadian Journal of Fisheries and Aquuatic Sciences, 2017, 74(9): 1454-1461. doi: 10.1139/cjfas-2016-0057

[3]

Zhang W Q, Jin X, Liu D, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river-Fuyang River in Northern China[J].Journal of Environmental Sciences, 2017, 55: 41-48. doi: 10.1016/j.jes.2016.07.004

[4]

Meinikmann K, Hupfer M, Lewandowski J, et al. Phosphorus in groundwater discharge-A potential source for lake eutrophication[J].Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031

[5]

袁建, 王亚平, 许春雪, 等. 湖泊沉积物中磷形态标准物质研制[J]. 岩矿测试, 2014, 33(6): 857-862.

Yuan J, Wang Y P, Xu C X, et al. Preparation of phosphorus speciation reference materials from lake sediments[J]. Rock and Mineral Analysis, 2014, 33(6): 857-862.

[6]

吴怡, 邓天龙, 徐青, 等. 水环境中磷的赋存形态及其分析方法研究进展[J]. 岩矿测试, 2010, 29(5): 557-564. doi: 10.3969/j.issn.0254-5357.2010.05.017

Wu Y, Deng T L, Xu Q, et al. Research progress on speciation analysis of phosphorus in aquatic environment[J]. Rock and Mineral Analysis, 2010, 29(5): 557-564. doi: 10.3969/j.issn.0254-5357.2010.05.017

[7]

秦丽欢, 曾庆慧, 李叙勇, 等. 密云水库沉积物磷形态分布特征[J]. 生态学杂志, 2017, 36(3): 774-781.

Qin L H, Zeng Q H, Li X Y, et al. The distribution characteristics of P forms in Miyun Reservoir sediments[J]. Chinese Journal of Ecology, 2017, 36(3): 774-781.

[8]

Zhao S N, Shi X H, Li C Y, et al. Diffusion flux of phosphorus nutrients at the sediment-water interface of the Ulansuhai Lake in Northern China[J].Water Science and Technology, 2017, 75(6): 1455-1465. doi: 10.2166/wst.2017.017

[9]

Wang C Y, Zhang Y, Li H L, et al. Sequential extraction procedures for the determination of phosphorus forms in sediment[J].Limnology, 2013, 14(2): 147-157. doi: 10.1007/s10201-012-0397-1

[10]

贾滨洋, 张伟, 张峰瑜, 等. 严重污染事故后河流的生态恢复——以沱江为例[J]. 环境科学导刊, 2008, 27(5): 35-40. doi: 10.3969/j.issn.1673-9655.2008.05.010

Jia B Y, Zhang W, Zhang F Y, et al. Ecological restoration of river after serious pollution accident by Tuo River as case study[J].Environmental Science Survey, 2008, 27(5): 35-40. doi: 10.3969/j.issn.1673-9655.2008.05.010

[11]

杜明, 柳强, 罗彬, 等. 岷江、沱江流域水环境质量现状评价及分析[J]. 四川环境, 2016, 35(5): 20-25. doi: 10.3969/j.issn.1001-3644.2016.05.004

Du M, Liu Q, Luo B, et al. Evaluation and analysis of present water environment quality of Minjiang & Tuojiang River basins[J].Sichuan Environment, 2016, 35(5): 20-25. doi: 10.3969/j.issn.1001-3644.2016.05.004

[12]

张蓉.沱江流域沉积物-水界面氮的赋存形态及环境地球化学研究[D].成都: 成都理工大学, 2008.

Zhang R.Environmental Geochemistry of Nitrogen Species at the Sediment-Water Interface in Water of Tuojiang River[D].Chengdu: Chengdu University of Technology, 2008.

[13]

Xu Q, Yu X P, Guo Y F, et al. Seasonal variations of phosphorus species in the Tuohe River, China.PartⅠ.Sediments[J].Journal of Oceanology and Limnology, 2018, 36(6): 1950-1961. doi: 10.1007/s00343-018-7315-2

[14]

李佳宣, 施泽明, 郑林, 等. 沱江流域水系沉积物重金属的潜在生态风险评价[J]. 地球与环境, 2010, 38(4): 481-487.

Li J X, Shi Z M, Zheng L, et al. Evaluation on potential ecological risk of heavy metals pollution in sediments from Tuojiang drainage[J]. Earth and Environment, 2010, 38(4): 481-487.

[15]

陶敏, 谢碧文, 齐泽民, 等. 沱江浮游植物群落特征及水质评价[J]. 海洋与湖沼, 2016, 47(4): 854-861.

Tao M, Xie B W, Qi Z M, et al. Phytoplankton community structure and water quality assessment in Tuojiang River[J]. Oceanologia et Limnologia Sinica, 2016, 47(4): 854-861.

[16]

陶敏, 王永明, 谢碧文, 等. 沱江浮游生物群落时空分布及相关环境因子分析[J]. 水生生物学报, 2016, 40(2): 301-312.

Tao M, Wang Y M, Xie B W, et al. Spatio-temporal distribution of plankton and driving environmental factors in the Tuojiang River[J]. Acta Hydrobiologica Sinica, 2016, 40(2): 301-312.

[17]

Zirino A, Elwany H, Facca C, et al. Nitrogen to pho-sphorus ratio in the Venice (Italy) Lagoon (2001-2010) and its relation to macroalgae[J].Marine Chemistry, 2016, 180: 33-41. doi: 10.1016/j.marchem.2016.01.002

[18]

杨华, 江辉煌, 万晔, 等. 灌河口北部海域氮磷营养盐分布及富营养化评价[J]. 海洋湖沼通报, 2015, (1): 155-161.

Yang H, Jiang H H, Wan Y, et al. Study on the characteristics of nutrients and eutrophication assessment of the north waters near Guanhe Estuary[J]. Transactions of Oceanology and Limnology, 2015, (1): 155-161.

[19]

刘霞, 徐青, 史淼森, 等. 沱江流域沉积物中氮赋存状态及其垂向分布特征[J]. 岩矿测试, 2018, 37(3): 320-326.

Liu X, Xu Q, Shi M S, et al. Nitrogen species and vertical distribution characteristics in the sediment of the Tuo River[J]. Rock and Mineral Analysis, 2018, 37(3): 320-326.

[20]

徐青.沱江流域沉积物-水界面磷的赋存形态及环境地球化学研究[D].成都: 成都理工大学, 2008.

Xu Q.Environmental Geochemistry of Phosphorus Species at the Sediment-Water Interface of Tuojiang River[D].Chengdu: Chengdu University of Technology, 2008.

[21]

Neal C, Neal M, Wickham H, et al. Phosphate measurement in natural waters:Two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies[J]. Science of the Total Environment, 2000, 251-252: 211-222.

[22]

Aydin I, Temel Z, Gunduz B, et al. Comparative deter-mination of phosphorus fractions in coastal surface sediment (NE Mediterranean Sea) by ICP-OES and UV/Vis spectrometry[J].Atomic Spectroscopy, 2018, 39(5): 193-197.

[23]

闫兴成, 王明玥, 许晓光, 等. 富营养化湖泊沉积物有机质矿化过程中碳、氮、磷的迁移特征[J]. 湖泊科学, 2018, 30(2): 306-313.

Yan X C, Wang M Y, Xu X G, et al. Migration of carbon, nitrogen and phosphorus during organic matter mineralization in eutrophic lake sediments[J]. Journal of Lake Sciences, 2018, 30(2): 306-313.

[24]

Wang Y M, Li K F, Liang R F, et al. Distribution and release characteristics of phosphorus in a reservoir in Southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16: 1-12.

[25]

潘延安, 雷沛, 张洪, 等. 重庆园博园龙景湖新建初期内源氮磷分布特征及扩散通量估算[J]. 环境科学, 2014, 35(5): 1727-1734.

Pan Y A, Lei P, Zhang H, et al. Distribution of nitrogen and phosphorus in the sediments and estimation nutrients fluxes in Longjinghu Lake, Chongqing City, during the impoundment period[J]. Environmental Science, 2014, 35(5): 1727-1734.

[26]

龚梦丹, 金增锋, 王燕, 等. 长江中下游典型浅水湖泊沉积物-水界面磷和铁的耦合关系[J]. 湖泊科学, 2017, 29(5): 1103-1111.

Gong M D, Jin Z F, Wang Y, et al. Coupling between iron and phosphorus in sediments of shallow lakes in the middle and lower reaches of Yangtze River using diffusive gradients in thin films (DGT)[J]. Journal of Lake Sciences, 2017, 29(5): 1103-1111.

[27]

Cao X Y, Song C L, Zhou Y Y, et al. Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes[J].Journal of Applied Phycology, 2010, 22(1): 33-41. doi: 10.1007/s10811-009-9422-0

[28]

周纯, 宋春雷, 曹秀云, 等. 太湖不同解有机磷菌株胞外碱性磷酸酶活性对蓝藻碎屑的响应[J]. 水生生物学报, 2012, 36(1): 119-125.

Zhou C, Song C L, Cao X Y, et al. Responses of extracellular alkaline phosphatase activity in different organic phosphorus mineralizing bacteria strains isolated from Lake Taihu to the cyanobacterium detritus[J]. Acta Hydrobiologica Sinica, 2012, 36(1): 119-125.

[29]

宋炜, 袁丽娜, 肖琳, 等. 太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J]. 环境科学, 2007, 28(10): 2355-2360. doi: 10.3321/j.issn:0250-3301.2007.10.035

Song W, Yuan L N, Xiao L, et al. Alpase activity and the distribution of phosphate solubilizing bacteria and the relationship between them in sediments of Lake Taihu[J].Environmental Science, 2007, 28(10): 2355-2360. doi: 10.3321/j.issn:0250-3301.2007.10.035

[30]

Subhajit D, Tapan K J, Tarun K D, et al. Vertical profile of phosphatase activity in the Sundarban Mangrove Forest, north east coast of bay of Bengal, India[J].Geomicrobiology Journal, 2014, 31: 716-725. doi: 10.1080/01490451.2013.866705

[31]

Alperin M J, Albert D B, Martens C S, et al. Seasonal varia-tions in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment[J].Geochimica et Cosmochimica Acta, 1994, 58(22): 4909-4930. doi: 10.1016/0016-7037(94)90221-6

[32]

倪建宇, MaggiulliM. 赤道东北太平洋沉积物间隙水中溶解有机碳的分布特征[J]. 海洋学报, 2007, 29(1): 155-160. doi: 10.3321/j.issn:0253-4193.2007.01.022

Ni J Y, Maggiulli M. Dissolved organic carbon in sediments from the equatorial Northeastern Pacific[J].Acta Oceanologica Sinica, 2007, 29(1): 155-160. doi: 10.3321/j.issn:0253-4193.2007.01.022

[33]

陈晶, 张毅敏, 杨飞, 等. 基于核磁共振技术的滆湖沉积物有机磷垂直分布特征[J]. 生态与农村环境学报, 2018, 34(9): 850-856.

Chen J, Zhang Y M, Yang F, et al. Characteristics of vertical distribution of organic phosphorus by 31P-NMR technique from different sources of core sediments in Gehu Lake[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 850-856.

[34]

陈海龙, 袁旭音, 王欢, 等. 苕溪干流悬浮物和沉积物的磷形态分布及成因分析[J]. 环境科学, 2015, 36(2): 464-470.

Chen H L, Yuan X Y, Wang H, et al. Distributions of phosphorus fraction in suspended sediments and surface sediments of Tiaoxi mainstreams and cause analysis[J]. Environmental Science, 2015, 36(2): 464-470.

[35]

Zhang W, Jin X, Meng X, et al. Phosphorus trans-formations at the sediment-water interface in shallow freshwater ecosystems caused by decomposition of plant debris[J].Chemosphere, 2018, 201: 328-334. doi: 10.1016/j.chemosphere.2018.03.006

[36]

Guo S K, Xiao S B. Distribution characteristics of pho-sphorus in sediments of Dianchi[J].Journal of Environmental Science and Engineering A, 2018, (7): 225-227.

[37]

Wu Y, Wen Y, Zhou J, et al. Phosphorus release from lake sediments:Effects of pH, temperature and dissolved oxygen[J].KSCE Journal of Civil Engineering, 2014, 18(1): 323-329. doi: 10.1007/s12205-014-0192-0

[38]

常琛朝, 程东会, 钱康, 等. 渭河咸阳段非饱和层状沉积物中水分分布特征[J]. 中国水土保持科学, 2017, 15(4): 104-110.

Chang C C, Cheng D H, Qian K, et al. Water content distribution of unsaturated layered sediments of Weihe River in Xianyang section[J]. Science of Soil and Water Conservation, 2017, 15(4): 104-110.

相似文献(共20条)

[1]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[2]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[3]

刘霞, 徐青, 史淼森, 余晓平, 郭亚飞, 邓天龙. 沱江流域沉积物中氮赋存状态及其垂向分布特征. 岩矿测试, 2018, 37(3): 320-326. doi: 10.15898/j.cnki.11-2131/td.201801250012

[4]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[5]

葛晓立, 刘浏, 徐清, 刘晓端, 王英华. 密云水库沉积物中磷的形态和分布特征. 岩矿测试, 2003, (2): 81-85.

[6]

钟俊, 林荣钦, 靳兰兰, 王秀季, 肖茂山, 盛绍基, 戚文玲. 野外现场多元素快速分析方法的研究和应用Ⅲ.磷钙镁的微珠比色测定. 岩矿测试, 2003, (1): 15-20.

[7]

许春雪, 袁建, 王亚平, 王苏明, 代阿芳. 沉积物中磷的赋存形态及磷形态顺序提取分析方法. 岩矿测试, 2011, 30(6): 785-794.

[8]

张月琴, 罗爱芹, 罗俊凌. 超声与振荡提取沉积物中松散结合态磷的比较. 岩矿测试, 2005, (3): 193-196.

[9]

袁建, 王亚平, 许春雪. 湖泊沉积物中磷形态标准物质研制. 岩矿测试, 2014, 33(6): 857-862.

[10]

陈明, 黄怀曾, 陈红军, 冯流. 永定河沉积物中磷的存在形态及其指示意义. 岩矿测试, 2005, (3): 176-180.

[11]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[12]

蔡敬怡, 谭科艳, 路国慧, 殷效彩, 郑宇, 邵鹏威, 王竞, 杨永亮. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123

[13]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[14]

滕云业. 中太平洋多金属结核和沉积物的地质特征及样品采集. 岩矿测试, 1997, (2): 104-108.

[15]

吴怡, 邓天龙, 徐青, 郭亚飞, 廖梦霞. 水环境中磷的赋存形态及其分析方法研究进展. 岩矿测试, 2010, 29(5): 557-564.

[16]

尹鹏, 何倩, 何会军, 赵志琦. 离子交换树脂法分离沉积物中锶和钕的影响因素研究. 岩矿测试, 2018, 37(4): 379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

[17]

董学林, 何海洋, 储溱, 宋洲. 封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅. 岩矿测试, 2019, 38(5): 575-582. doi: 10.15898/j.cnki.11-2131/td.201708230132

[18]

杨承帆, 杨守业. 真空抽提结合同位素分析技术研究风化剖面中水的氢氧同位素组成特征. 岩矿测试, 2016, 35(1): 69-74. doi: 10.15898/j.cnki.11-2131/td.2016.01.012

[19]

胡恭任, 于瑞莲, 赵金秀, 刘小进, 涂湘林. 泉州湾洛阳江河口桐花树和秋茄红树植物中重金属元素的分布与富集特征. 岩矿测试, 2010, 29(3): 236-240.

[20]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

计量
  • PDF下载量(17)
  • 文章访问量(247)
  • HTML全文浏览量(51)
  • 被引次数(0)
目录

Figures And Tables

沱江沉积物-水界面磷形态垂向分布及时空变化特征

徐青, 刘霞, 余晓平, 郭亚飞, 邓天龙