【引用本文】 赵昕, 严慧, 禹莲玲, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛[J]. 岩矿测试, 2020, 39(3): 459-466. doi: 10.15898/j.cnki.11-2131/td.201911020150
ZHAO Xin, YAN Hui, YU Lian-ling, et al. Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2020, 39(3): 459-466. doi: 10.15898/j.cnki.11-2131/td.201911020150

过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛

湖南省地质测试研究院, 湖南 长沙 410007

收稿日期: 2019-11-02  修回日期: 2020-02-23  接受日期: 2020-04-16

基金项目: 中央引导地方科技发展专项资金项目“湖南省地质测试研究院大型仪器科研购置”(2018KT5001);湖南省地质矿产勘查开发局科研基金项目(201808)

作者简介: 赵昕, 硕士, 工程师, 主要从事岩矿测试分析。E-mail:365827149@qq.com

通信作者: 严慧, 硕士, 高级工程师, 主要从事地质实验测试技术方面的应用及研究。E-mail:223305564@qq.com

Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion

Geological Testing Institute of Hunan Province, Changsha 410007, China

Corresponding author: YAN Hui, 223305564@qq.com

Received Date: 2019-11-02
Revised Date: 2020-02-23
Accepted Date: 2020-04-16

摘要:钛矿资源主要类型为钛铁矿岩矿、钛铁矿砂矿、金红石矿。钛铁矿属于难熔矿物,一般不溶于硝酸、盐酸或王水。对于高品位钛铁矿,即使采用盐酸-硝酸-氢氟酸-高氯酸混合酸溶解样品,钛元素也易水解形成难溶的偏钛酸析出,常给分析带来很大困难。容量法和分光光度法等传统方法测定钛存在操作流程长、步骤多、效率低等不足。因此,选择合适前处理方法的同时将大型仪器分析方法结合起来,有利于提高钛铁矿分析的准确度和测试效率。本文建立了以2.0g过氧化钠为熔剂,使用刚玉坩埚在700℃熔融样品15min,热水浸取后盐酸酸化,用电感耦合等离子体发射光谱(ICP-OES)测定钛铁矿中的高含量钛元素的方法。实验中采用全程空白试液稀释定容标准溶液消除了钠基体影响,通过优化熔融温度和时间使样品分解完全,考察了过氧化钠用量来降低待测溶液中盐分以保证测定的稳定性,通过选择合适的分析谱线并采用背景扣除法消除光谱干扰。本方法检出限为0.0035%,测试范围为0.0066%~62.50%(均以TiO2含量计);经钛铁矿国家标准物质(GBW07839、GBW07841)验证,相对标准偏差(RSD,n=12)为1.1%~2.1%,相对误差为-1.69%~1.11%。本方法应用于实际样品分析,相对标准偏差(RSD,n=12)均小于4%,TiO2分析结果与国家标准方法(硫酸铁铵容量法)一致。本方法有效解决了钛铁矿分解不完全及高含量的钛易水解的问题,实现ICP-OES对不同类型钛铁矿样品中钛元素的定量分析。

关键词: 钛铁矿, , 刚玉坩埚, 过氧化钠碱熔, 电感耦合等离子体发射光谱法

要点

(1) 对比了王水、四酸、碱熔法对钛测定的影响,选取过氧化钠碱熔,水浸-盐酸酸化体系。

(2) 考察了过氧化钠用量来降低待测溶液中盐分,采用全程空白试液稀释定容标准溶液消除钠基体影响。

(3) 该方法熔矿完全,分析速度快,ICP-OES线性范围宽。

Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion

ABSTRACT

BACKGROUND:

The main types of ilmenite resources are ilmenite ore, ilmenite placer, and rutile ore. Ilmenite is a mineral that is difficult to be digested, and generally insoluble in nitric acid, hydrochloric acid or an aqua system. For high-grade ilmenite, even if the sample is dissolved by hydrochloric acid-nitric acid-hydrofluoric acid-perchloric acid mixture, titanium element is also easy to hydrolyze to form insoluble partial titanic acid precipitation, which often causes great difficulties in analysis. However, the traditional methods such as volumetric and spectrophotometry have the problems of long operation process, many steps and low efficiency.

OBJECTIVES:

To improve the accuracy of the analysis of titanium in ilmenite and test efficiency by choosing the appropriate pretreatment combined with large-scale instrument analysis methods.

METHODS:

Using 2.0g sodium peroxide as flux, the samples were melted in a corundum crucible at 700℃ for 15min. The resulted melts were soaked in hot water of 40-50℃, and then acidified with hydrochloric acid. The high content of titanium in the sample was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effect of the sodium matrix was eliminated by diluting the standard solution with a blank test solution. The sample was decomposed completely by optimizing the melting temperature and time. The salt content in the solution was reduced by optimizing the quality of sodium peroxide to ensure the stability of the determination. The spectral interference was eliminated by optimizing the spectral lines and using the background deduction method.

RESULTS:

The detection limit of this method was 0.0035%, the analytical ranges were from 0.0066% to 62.50% (both were calculated by TiO2 content). The relative standard deviations (RSD, n=12) were 1.1%-2.1% and the relative errors were -1.69%-1.11%, which was verified by the national standard materials (GBW07839, GBW07841) of ilmenite. For actual sample analysis, the relative standard deviations of the method (RSD, n=12) were less than 4%. The analytical results were consistent, compared with the national standard method (ferric ammonium sulfate volumetric method).

CONCLUSIONS:

This method is used to effectively solve the problems of incomplete digestion of ilmenite and easy hydrolysis of high content ilmenite, and achieve rapidly quantitative analysis of titanium content in different ilmenite samples by ICP-OES.

KEY WORDS: ilmenite, titanium, sodium peroxide fusion, corundum crucible, inductively coupled plasma-optical emission spectrometry

HIGHLIGHTS

(1) The effect of aqua regia, four acid, alkali fusion methods on the result of determination of TiO2 was compared. The method involving sodium peroxide alkali fusion, hot water extraction and hydrochloric acidification was chosen.

(2) The salt content in the solution was reduced by optimizing the quality of sodium peroxide, and the matrix influence of the sodium matrix was eliminated by diluting the standard solution with blank test solution in the whole procedure.

(3) The method had complete dissolution, fast analysis and a wide linear range of ICP-OES determination.

本文参考文献

[1]

高阳, 刘雨晴, 李冠玉, 等. 四川钛产业现状及可持续发展建议[J]. 四川有色金属, 2016, (4): 7-9.

Gao Y, Liu Y Q, Li G Y, et al. Situation analysis and sustainable development suggestions of titanium industry in Sichuan[J]. Sichuan Nonferrous Metals, 2016, (4): 7-9.

[2]

孙赛军, 廖仁强, 丛亚楠, 等. 钛的地球化学性质与成矿[J]. 岩石学报, 2020, 36(1): 68-76.

Sun S J, Liao R Q, Cong Y N, et al. Geochemistry and mineralization of titanium[J]. Acta Petrologica Sinica, 2020, 36(1): 68-76.

[3]

吴贤, 张健. 中国的钛资源分布及特点[J]. 钛工业进展, 2006, (6): 8-12.

Wu X, Zhang J. Geographical distribution and chara-cteristics of titanium resources in China[J]. Titanium Industry Progress, 2006, (6): 8-12.

[4]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第二分册)[M] . 北京: 地质出版社, 2011: 753-763.

The editorial committee of < Rock and mineral analysis> . Rock and mineral analysis (The fourth edition:Vol.Ⅱ)[M] . Beijing: Geological Publishing House, 2011: 753-763.
[5]

刘冠龙, 许俊鸿. 重铬酸钾滴定法快速测定钛铁矿中钛铁含量[J]. 冶金分析, 2012, 32(3): 74-76.

Liu G L, Xu J H. Rapid determination of titaniumand iron in ilmenite by potassium dichromate titrimetry[J]. Metallurgical Analysis, 2012, 32(3): 74-76.

[6]

刘艳花, 孙湘莉. 莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J]. 冶金分析, 2017, 37(7): 37-44.

Liu Y H, Sun X L. Combined determination of titanium and chromium in the samples from the flotation- metallurgy process of heavy placer in Mozambique[J]. Metallurgical Analysis, 2017, 37(7): 37-44.

[7]

许宁辉, 于红燕, 郝文婷, 等. 硫酸铁铵滴定法测定低密度铌合金中钛元素[J]. 材料开发与应用, 2019, 34(3): 41-45.

Xu N H, Yu H Y, Hao W T, et al. Determination of titanium in low density niobium alloy by ammonium ferric sulfate titration[J]. Development and Application of Materials, 2019, 34(3): 41-45.

[8]

豆卫全, 高明, 夏培民, 等. 分光光度法分步测定高纯硅铁中铝钛磷[J]. 冶金分析, 2019, 39(7): 71-76.

Dou W Q, Gao M, Xia P M, et al. Determination of aluminium, titanium and phosphorus in high purity ferrosilicon by spectrophotometry[J]. Metallurgical Analysis, 2019, 39(7): 71-76.

[9]

Duchesne J C, Bologne G. XRF major and trace element determination in Fe-Ti oxide minerals[J].Geologica Belgica, 2009, 12(3-4): 205-212.

[10]

卜兆杰, 王晓旋, 黄健强, 等. 粉末压片制样-X射线荧光光谱(XRF)法测定钛铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO的含量[J]. 中国无机分析化学, 2018, 8(1): 17-20.

Bu Z J, Wang X X, Huang J Q, et al. Determination of TFe, TiO2, SiO2, Al2O3, CaO and MgO content in ilmenite by XRF with powder press method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 17-20.

[11]

Morgan N K, Scholey D V, Burton E J, et al. A comparison of two methods for determining titanium dioxide marker content in broiler digestibility studies[J]. Animal, 2014, 8(4): 529-533.

[12]

沈春春. 等离子体发射光谱仪测定钛铁矿中钛含量[J]. 化工时刊, 2016, 30(4): 30-32.

Shen C C. The determination of titanium content in the ilmenite by ICP-AES[J]. Chemical Industry Times, 2016, 30(4): 30-32.

[13]

赵伟, 王卿, 张会堂, 等. 电感耦合等离子体发射光谱法测定钛铁矿中主、微量元素[J]. 山东国土资源, 2018, 34(5): 107-110.

Zhao W, Wang Q, Zhang H T, et al. Determination of main and trace elements in ilmenite by using inductively coupled plasma atomic emission spectrometry method[J]. Shandong Land and Resources, 2018, 34(5): 107-110.

[14]

巨力佩, 季伟, 张旺强, 等. 电感耦合等离子体发射光谱法测定钒钛铁矿中二氧化钛[J]. 分析测试技术与仪器, 2013, 19(2): 88-91.

Ju L P, Ji W, Zhang W Q, et al. Determination of TiO2 in sefstromite by inductively coupled plasma atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2013, 19(2): 88-91.

[15]

陈玉秀, 闫月娥, 马小文, 等. ICP-OES测定钒钛铁精矿中钛、镁、钒、锰和铬的含量[J]. 广州化工, 2019, 47(16): 109-111.

Chen Y X, Yan Y E, Ma X W, et al. Determination of titanium, magnesium, vanadium, manganese and chromium content in vanadium-titanium-iron concentrates by ICP-OES[J]. Guangzhou Chemical Industry, 2019, 47(16): 109-111.

[16]

王延芹. 电感耦合等离子体原子发射光谱法测定钛铁中Ti, Si, P, Al, Mn, Cu[J]. 世界有色金属, 2019, (7): 132-134.

Wang Y Q. Inductively coupled plasma atomic emission spectrometry for the determination of Ti, Si, P, Al, Mn, Cu in ferrotitanium[J].World Nonferrous Metals, 2019, (7): 132-134.

[17]

郑浩. 试论钒钛磁铁矿中二氧化钛的测定[J]. 世界有色金属, 2019, (8): 217-218.

Zheng H. Discussion on the determination of titanium dioxide in vanadium-titanium magnetite[J]. World Nonferrous Metals, 2019, (8): 217-218.

[18]

史健泽, 曲凤娇, 曹阳, 等. 电感耦合等离子体发射光谱法测定铝合金中钛含量[J]. 有色金属加工, 2020, 49(2): 63-66.

Shi J Z, Qu F J, Cao Y, et al. Determination of titanium in aluminum alloy by inductively coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Processing, 2020, 49(2): 63-66.

[19]

Francisco L F S, Thalita A O D, Luciana S M, et al. Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry[J]. Talanta, 2016, 146: 188-194.

[20]

Daniel L, Laird D W, Hefter G T, et al. Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168: 35-39.

[21]

Wei X J, Tian Z Q. Simultaneous determination of ruthenium and zinc in catalysts for hydrogenation of benzene to cyclohexene using sodium peroxide fusion sample digestion and ICP-OES[J]. Advanced Materials Research, 2014, 1004-1005: 1281-1284.

[22]

肖柳婧, 汤行, 吴玉华, 等. 碱熔-电感耦合等离子体原子发射光谱(ICP-AES)法测定锡矿石中锡[J]. 中国无机分析化学, 2018, 8(5): 38-40.

Xiao L J, Tang X, Wu Y H, et al. Determination of tin in tin ore by inductively coupled plasma-atomic emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5): 38-40.

[23]

黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35.

Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35.

[24]

雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-332.

Lei Z C, Han S Q T, Jiang C J, et al. Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332.

[25]

王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58.

Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58.

[26]

姜云军, 李星, 姜海伦, 等. 四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2): 152-158.

Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2): 152-158.

[27]

侯莎, 段玉宇, 马怡飞, 等. 四酸溶解-电感耦合等离子体发射光谱法测定镍精矿中12种主次元素[J]. 化学分析计量, 2019, 28(3): 96-99.

Hou S, Duan Y Y, Ma Y F, et al. Determination of 12 principal and secondary elements in nickel ore concentrate by four acids solution-inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(3): 96-99.

[28]

仝晓红, 刘攀, 聂富强, 等. 碱熔-电感耦合等离子体原子发射光谱法测定高碳铬铁中铬[J]. 冶金分析, 2015, 35(9): 36-41.

Tong X H, Liu P, Nie F Q, et al. Determination of chromium in high-carbon ferrochrome by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(9): 36-41.

[29]

董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630.

Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630.

[30]

赵庆令, 李清彩. 电感耦合等离子体发射光谱法测定锆钛砂矿中铪钛锆[J]. 岩矿测试, 2013, 32(6): 883-886.

Zhao Q L, Li Q C. Determination of Hf, Ti and Zr in zirconium-titanium placer by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 883-886.

[31]

聂富强, 杜丽丽, 李景滨, 等. 碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J]. 中国无机分析化学, 2015, 5(4): 74-78.

Nie F Q, Du L L, Li J B, et al. Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 74-78.

[32]

邝安宏, 胡家明. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定透辉石中的SiO2、CaO、MgO、Al2O3、Fe2O3[J]. 分析测试技术与仪器, 2018, 24(3): 173-178.

Kuang A H, Hu J M. Determination of SiO2, CaO, MgO, Al2O3, Fe2O3 in diopside by inductively coupled plasma atomic emission spectrometry with lithium metaborate fusion sample pretreatment[J]. Analysis and Testing Technology and Instruments, 2018, 24(3): 173-178.

相似文献(共18条)

[1]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[2]

王卿, 赵伟, 张会堂, 周长祥, 回寒星. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中铬磷钒. 岩矿测试, 2012, 31(6): 971-974.

[3]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[4]

黄超冠, 蒙义舒, 郭焕花, 林凌宇, 杨春涛. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅. 岩矿测试, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

[5]

王小强, 夏辉, 秦九红, 王书勤, 杨惠玲, 宋志敏, 杜天军. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分. 岩矿测试, 2017, 36(1): 52-58. doi: 10.15898/j.cnki.11-2131/td.2017.01.008

[6]

杨载明. 二次熔矿方式电感耦合等离子体发射光谱法测定棕刚玉中硅铁钛钙镁锆. 岩矿测试, 2012, 31(4): 617-620.

[7]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[8]

朱跃华, 冯永亮, 吕东海, 张宁, 朱智星. 电感耦合等离子体发射光谱法同时测定钒钛磁铁矿中铁钛钒. 岩矿测试, 2012, 31(2): 258-262.

[9]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁. 岩矿测试, 2012, 31(3): 442-445.

[10]

赵庆令, 李清彩. 电感耦合等离子体发射光谱法测定锆钛砂矿中铪钛锆. 岩矿测试, 2013, 32(6): 883-886.

[11]

胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫. 岩矿测试, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005

[12]

杨惠玲, 夏辉, 杜天军, 白露, 秦九红, 铁锦林. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌. 岩矿测试, 2013, 32(6): 887-892.

[13]

孙哲平. 高频熔样等离子体发射光谱标准加入法测定刚玉中硅钛. 岩矿测试, 2005, (2): 154-156.

[14]

许又方, 蔡玉曼. 钛铁矿中二氧化硅的硅钼蓝分光光度法测定. 岩矿测试, 2007, 26(1): 75-77.

[15]

李贤珍, 高小飞, 姚明星, 倪文山, 毛香菊. 电感耦合等离子体发射光谱法测定黑钨矿精矿和中矿中的锰. 岩矿测试, 2012, 31(3): 438-441.

[16]

罗磊, 付胜波, 肖洁, 魏灵巧, 戴伟峰, 丁晓晓. 电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅. 岩矿测试, 2014, 33(2): 203-207.

[17]

王立平, 杨明灵, 张丽, 吴迪, 赵海珍, 尹剑飞. 电感耦合等离子体发射光谱法同时测定钒钛磁铁矿中钒钛钴镍. 岩矿测试, 2012, 31(3): 450-455.

[18]

袁家义, 姜云, 吕振生. X射线荧光光谱熔融制样法测定钛铁矿中主次量组分. 岩矿测试, 2007, 26(2): 158-159.

计量
  • PDF下载量(20)
  • 文章访问量(299)
  • HTML全文浏览量(65)
  • 被引次数(0)
目录

Figures And Tables

过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中的高含量钛

赵昕, 严慧, 禹莲玲, 汤行, 柳昭