【引用本文】 万秋, 李延河, 王利民, 等. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征[J]. 岩矿测试, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125
WAN Qiu, LI Yan-he, WANG Li-min, et al. The Age and Geochemical Characteristics of Neoproterozoic Gneissic Moyite in the Xiaotian Basin[J]. Rock and Mineral Analysis, 2020, 39(4): 620-630. doi: 10.15898/j.cnki.11-2131/td.201908120125

北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征

1. 

中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037

2. 

安徽省地质调查院, 安徽 合肥 230001

3. 

自然资源部覆盖区深部资源勘查工程技术创新中心, 安徽 合肥 230001

收稿日期: 2019-08-12  修回日期: 2019-09-17  接受日期: 2019-10-21

基金项目: 中国地质科学院基本科研业务费项目(YYWF201710);国家自然科学基金项目(41973022);合肥市人才专项

作者简介: 万秋, 博士, 高级工程师, 主要从事地质勘查及研究工作。E-mail:att3955@163.com

通信作者: 李延河, 博士, 研究员, 从事地球化学研究工作。E-mail:lyh@cei.gov.cn

The Age and Geochemical Characteristics of Neoproterozoic Gneissic Moyite in the Xiaotian Basin

1. 

Institute of Mineral Resources, Chinese Academy of Geological Sciences; Key Laboratory of Metallogeny and Mineral Assessment, Ministry of National Resources, Beijing 100037, China

2. 

Geological Survey of Anhui Province, Hefei 230001, China

3. 

The Coverage Area Deep Resource Exploration Engineering Technology Innovation Center, Ministry of Natural Resources, Hefei 230001, China

Corresponding author: LI Yan-he, lyh@cei.gov.cn

Received Date: 2019-08-12
Revised Date: 2019-09-17
Accepted Date: 2019-10-21

摘要:岩石的锆石U-Pb定年和主量、微量、稀土元素分析是研究侵入岩成岩时代、岩石成因的主要研究手段。本文在野外地质调查工作的基础上,采用X射线荧光光谱、电感耦合等离子体发射光谱、电感耦合等离子体质谱和LA-ICP-MS等技术对晓天火山岩盆地内杨三寨附近发现的片麻状钾长花岗岩进行相关地球化学分析。结果表明:该岩体主量元素以高硅、钾和钠,低铁镁钙磷为特征,其中SiO2含量为65.86%~78.29%,Al2O3为10.89%~16.02%,MgO为0.17%~1.17%,K2O为1.37%~6.44%,Na2O为0.53%~6.50%,属于高钾钙碱性系列。微量元素方面,样品以亏损Nb、Sr、P和Ti,富集La、Ce、Nd和Zr为特征。稀土元素方面,含有较高的稀土元素(ΣREE=152.70~650.88μg/g),轻稀土富集重稀土亏损(LREE/HREE=6.77~20.64),多数具有较弱的负铕异常(δEu=0.29~1.15),铈异常不明显;稀土元素标准化曲线以右倾为特征。30个锆石点的206Pb/238U年龄分布于720~828Ma之间,加权平均年龄为776±11Ma(MSWD=2.1)。研究认为,盆地内新元古代片麻状钾长花岗岩的发现表明晓天盆地中心存在隆起,并不是之前研究认为的"斗"形的两边浅中间厚的盆地形态,这对该盆地的构造形态认识和进一步找矿具有重要的指导意义。

关键词: 片麻状钾长花岗岩, 主量元素, 微量元素, 稀土元素, U-Pb定年, 锆石年龄

要点

(1) 在晓天火山岩盆地发现新元古代片麻状钾长花岗岩。

The Age and Geochemical Characteristics of Neoproterozoic Gneissic Moyite in the Xiaotian Basin

ABSTRACT

BACKGROUND:

The zircon U-Pb dating and analysis of major, trace and rare earth elements of rocks are the main research methods used to study the genesis of intrusive rocks.

OBJECTIVES:

To constrain the genesis of neoproterozoic gneissic moyite of the Yangsanzhai, Xiaotian volcanic basin.

METHODS:

Chemical composition of rocks was analyzed by X-ray fluorescence spectrometry (XRF), inductively coupled plasma-mass spectrometry (ICP-MS), and the zircon U-Pb age was determined by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS).

RESULTS:

Results show that the rock was characterized by high silicon, kalium and sodium, and low iron, magnesium, calcium and phosphorus. The content of SiO2, Al2O3, MgO, K2O and Na2O were 65.86%-78.29%, 10.89%-16.02%, 0.17%-1.17%, 1.37%-6.44% and 0.53%-6.50%, respectively. The rock belonged to the high potassic calc-alkaline series. The samples were characterized by depletion of Nb, Sr, P and Ti, and enrichment of La, Ce, Nd and Zr. The samples had high content of rare earth elements (ΣREE=152.70-650.88μg/g) with light rare earth enrichment (LREE/HREE=6.77-20.64). Most of the samples had weakly negative europium anomalies (δEu=0.29-1.15) without cerium anomaly. The normalized curve of rare earth elements was characterized by right-incline. The 206Pb/238U ages of the 30 zircon points ranged from 720 to 828Ma, with a weighted average age of 776±11Ma (MSWD=2.1).

CONCLUSIONS:

The discovery of Neoproterozoic gneissic moyite in the Xiaotian Basin indicates that there is uplift in the center of this basin, not the 'bucket' shape of thick in the middle and thin at the sides, as previously recognized. This has important guiding significance for the understanding of the tectonic morphology of the basin and further prospecting.

KEY WORDS: gneissic moyite, major elements, trace elements, rare earth elements, U-Pb dating, zircon age

HIGHLIGHTS

(1) Neoproterozoic gneissic moyite was discovered for the first time on the surface of the Xiaotian volcanic basin.

本文参考文献

[1]

王波华, 李利, 倪培, 等. 安徽北淮阳地区金矿化相关火山岩的形成年代和源区特征:锆石U-Pb定年和Hf同位素的制约[J]. 矿产勘查, 2017, 8(3): 348-357.

Wang B H, Li L, Ni P, et al. Formation age and characteristics of magma sources of volcanics related to gold mineralization in the Beihuaiyang zone, Anhui:Constraints from zircon U-Pb dating and Hf isotopes[J]. Mineral Exploration, 2017, 8(3): 348-357.

[2]

彭智, 邱军强, 杨义忠, 等. 北淮阳东段山七岩体地球化学特征、LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 华东地质, 2018, 39(1): 1-10.

Peng Z, Qiu J Q, Yang Y Z, et al. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of the Shanqi intrusion in Eastern North Huaiyang and their geological significance[J]. East China Geology, 2018, 39(1): 1-10.

[3]

邬宗玲, 夏飞强, 盛勇, 等. 北淮阳构造带东段中生代火山岩区域成岩规律[J]. 合肥工业大学学报(自然科学版), 2017, 40(5): 690-696.

Wu Z L, Xia F Q, Sheng Y, et al. Regional diagenesis study for Mesozoic volcanic rocks in eastern section of Beihuaiyang tectonic belt, China[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(5): 690-696.

[4]

王波华, 张怀东, 王萍, 等. 北淮阳地区与斑岩型钼矿床相关岩浆岩的地质地球化学特征及成因[J]. 地学前缘, 2016, 23(4): 46-62.

Wang B H, Zhang H D, Wang P, et al. Geological and geochemical characteristics and genesis of magmatic rocks related to porphyry Mo deposits in the Beihuaiyang region[J]. Earth Science Frontiers, 2016, 23(4): 46-62.

[5]

彭智. 北淮阳东段基础地质评述[J]. 安徽地质, 2004, 14(3): 172-176.

Peng Z. A review on fundamental geology in the eastern segment of northern Huaiyang belt[J]. Anhui Geology, 2004, 14(3): 172-176.

[6]

陆三明, 彭海辉, 盛中烈, 等. 北淮阳构造带东段铅锌矿找矿前景[J]. 安徽地质, 2002, 12(2): 114-119.

Lu S M, Peng H H, Sheng Z L, et al. Potential value of lead-zinc mineral ore resources in the east of North Huaiyang tectonic zone[J]. Anhui Geology, 2002, 12(2): 114-119.

[7]

杜建国, 顾连兴, 孙先如, 等. 大别造山带的流体系统与成矿作用[J]. 地质学报, 2001, 75(4): 507-517.

Du J G, Gu L X, Sun X R, et al. Fluid system and mineralization of the Dabie orogenic belt[J]. Acta Geologica Sinica, 2001, 75(4): 507-517.

[8]

陈芳, 杜建国, 万秋, 等. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄[J]. 岩矿测试, 2016, 35(3): 329-338.

Chen F, Du J G, Wan Q, et al. Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of Xujiawan monzogranite in the eastern part of north Huaiyang and their geological significance[J]. Rock and Mineral Analysis, 2016, 35(3): 329-338.

[9]

彭三国, 王爱国. 武当-桐柏-大别成矿带主要成矿体制与成矿建造[J]. 矿床地质, 2014, 33(Supplement 1): 117-118.

Peng S G, Wang A G. Main mining system and mining construction of Wudang-Tongbo-Dabie metallogenic belt[J]. Mineral Deposits, 2014, 33(Supplement 1): 117-118.

[10]

张定源, 王爱国, 张晓东, 等. 安徽省霍山县东溪-南关岭金矿地质特征与成矿条件[J]. 资源调查与环境, 2014, 35(3): 202-210.

Zhang D Y, Wang A G, Zhang X D, et al. Geological characteristics and ore-forming conditions of Dongxi-Nanguanling gold deposit, Huoshan county, Anhui Province[J]. Resources Survey and Environment, 2014, 35(3): 202-210.

[11]

黄皓, 薛怀民. 北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 岩石矿物学杂志, 2012, 31(3): 371-381.

Huang H, Xue H M. LA-ICP-MS zircon U-Pb ages of Early Cretaceous volcanic rocks from Jingangtai Formation in Beihuaiyang belt on the northern margin of the Dabie Orogen and their geological implications[J]. Acta Petrologica et Mineralogica, 2012, 31(3): 371-381.

[12]

杨祝良, 沈渭洲, 谢芳贵, 等. 大别山北缘中生代火山-侵入岩铅同位素组成特征及其地质意义[J]. 高校地质学报, 1999, 5(4): 384-389.

Yang Z L, Shen W Z, Xie F G, et al. Lead isotopic composition and its geological significance for mesozoic volcano-intrusive rocks from the northern margin of Dabie mountains[J]. Geological Journal of China Universities, 1999, 5(4): 384-389.

[13]

刘贻灿, 刘理湘, 古晓锋, 等. 大别山北淮阳带西段新元古代浅变质岩片的岩石组成及其大地构造意义[J]. 地质科学, 2011, 46(2): 273-287.

Liu Y C, Liu L X, Gu X F, et al. Neoproterozoic foreign low-grade metamorphic slices in the Western Beihuaiyang zone of the Dabie orogen and their tectonic significance[J]. Chinese Journal of Geology, 2011, 46(2): 273-287.

[14]

刘贻灿, 刘理湘, 古晓锋, 等. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义[J]. 科学通报, 2010, 55(24): 2391-2399.

Liu Y C, Liu L X, Gu X F, et al. Occurrence of neoproterozoic low-grade metagranite in the western Beihuaiyang zone, the Dabie orogen[J]. Chinese Science Bulletin, 2010, 55(24): 2391-2399.

[15]

王果胜, 宋鸿林, 马文璞, 等. 北淮阳带东段变质构造地层早期构造变形及其区域地质意义[J]. 地学前缘, 2004, 11(3): 83-90.

Wang G S, Song H L, Ma W P, et al. Earlier deformation of the metamorphic tectono-stratigraphic unit in the eastern Beihuaiyang belt and its significance in regional geology[J]. Earth Science Frontiers, 2004, 11(3): 83-90.

[16]

付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1-13.

Fu S L, Zhao C H. Progress of in situ U-Th/He isotopic dating technique and its application to low temperature deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1-13.

[17]

周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359.

Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to analysis[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359.

[18]

王家松, 许雅雯, 彭丽娜, 等. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应[J]. 岩矿测试, 2016, 35(5): 458-467.

Wang J S, Xu Y W, Peng L N, et al. Laser-Raman spectroscopic study and LA-ICP-MS U-Pb dating of zircons from the Badaling granitic complex[J]. Rock and Mineral Analysis, 2016, 35(5): 458-467.

[19]

刘建辉. SHRIMP锆石铀-铅同位素定年中普通铅204Pb对实验结果的影响[J]. 岩矿测试, 2012, 31(4): 597-601.

Liu J H. SHRIMP Zircon U-Pb dating:Effects of common 204Pb on the result[J]. Rock and Mineral Analysis, 2012, 31(4): 597-601.

[20]

王彦斌, 张拴宏, 赵越, 等. 锆石SHRIMP年龄测定数据处理时系统偏差的避免——标准锆石分段校正的必要性[J]. 岩矿测试, 2006, 25(1): 9-14.

Wang Y B, Zhang S H, Zhao Y, et al. Avoidance of systematic bias of SHRIMP zircon U-Pb dating:Necessity of staged calibrations[J]. Rock and Mineral Analysis, 2006, 25(1): 9-14.

[21]

Hou Z H, Xiao Y L, Shen J, et al. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie orogen, China[J].Journal of Asian Earth Sciences, 2020, 192: 104261. doi: 10.1016/j.jseaes.2020.104261

[22]

宋彪, 张玉海, 刘敦一, 等. 微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J]. 质谱学报, 2002, 23(1): 58-62.

Song B, Zhang Y H, Liu D Y, et al. Introduction to the naissance of SHRIMP and its contribution to isotope geology[J]. Journal of Chinese Mass Spectrometry Society, 2002, 23(1): 58-62.

[23]

Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257, a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x

[24]

侯可军, 李延河, 田有荣, 等. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492.

Hou K J, Li Y H, Tian Y R, et al. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.

[25] Ludwig K R. Isoplot/Ex 3.00:A geochronological toolkit for Microsoft Excel[M] . : Berkeley Geochronological Center, 2003
[26]

张晋喆, 沈仕豪, 储东如, 等. 北淮阳东缘新元古代花岗质侵入体岩石学、地球化学及锆石U-Pb年代学特征[J]. 华南地质与矿产, 2018, 34(3): 195-206.

Zhang J Z, Shen S H, Chu D R, et al. The petrology, geochemistry and zircon U-Pb geochronology of the neoproterozoic granites in the eastern Beihuaiyang belt[J]. Geology and Mineral Resources of South China, 2018, 34(3): 195-206.

[27]

谢智, 陈江峰, 张巽, 等. 北淮阳新元古代基性侵入岩年代学初步研究[J]. 地球学报, 2002, 23(6): 517-520.

Xie Z, Chen J F, Zhang X, et al. Ceochornology of neoporteorzoie maife intrusions in North Huaiyang area[J]. Acta Gescoientia Sinica, 2002, 23(6): 517-520.

[28]

王果胜, 马文璞, 徐毅, 等. 北淮阳东段变质构造地层的古构造环境[J]. 现代地质, 2005, 19(2): 217-223.

Wang G S, Ma W P, Xu Y, et al. Paleotectonic settings of the metamorphic tectonostratigraphy in the eastern Beihuaiyang belt[J]. Geoscience, 2005, 19(2): 217-223.

[29]

柴广路, 李双应. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J]. 地学前缘, 2016, 23(4): 29-45.

Chai G L, Li S Y. Geochemical characteristics and geological implications for the metamorphic rocks of Fouling group in eastern of North Huaiyang tectonic belt[J]. Earth Science Frontiers, 2016, 23(4): 29-45.

[30]

赵俊先, 石永红, 唐虎, 等. 北淮阳变质单元中"浅变质"带——佛子岭群主期变质条件和碎屑锆石年代学探究[J]. 岩石学报, 2019, 35(7): 2219-2236.

Zhao J X, Shi Y H, Tang H, et al. Study on peak metamorphism conditions and zircons U-Pb chronology in the "low-grade metamorphism" belt Foziling group Beihuaiyan metamorphic unit[J].Acta Petrologica Sinica, 2019, 35(7): 2219-2236.

[31]

杜建国, 刘文灿, 孙先如, 等. 安徽北淮阳构造带基底变质岩的构造属性[J]. 现代地质, 2000, 14(4): 401-407.

Du J G, Liu W C, Sun X R, et al. Tectonic attribute of basement metamorphic rocks in Beihuaiyang tectonic belt, Anhui Province[J]. Geoscience, 2000, 14(4): 401-407.

[32]

刘文灿, 宋鸿林, 马文璞, 等. 北淮阳地区变质构造地层划分与对比[J]. 现代地质, 1999, (2): 137-138.

Liu W C, Song H L, Ma W P, et al. Subdivision and correlation of the metamorphic tectono-stratigraphy in northern Huaiyang region[J]. Geoscience, 1999, (2): 137-138.

[33]

杜建国, 张鹏, 孙先如, 等. 北淮阳地区晚元古宙花岗岩类岩石地球化学特征及构造背景[J]. 安徽地质, 1997, 7(3): 1-8.

Du J G, Zhang P, Sun X R, et al. The petrogeochemistry and tectonic setting of the Late Proterozoic gneissoid granitoid in the Beihuaiyang area, Anhui[J].Anhui Geology, 1997, 7(3): 1-8.

[34]

林伟, 冀文斌, 石永红, 等. 大别山东北缘桐城高压-超高压变质带的构造解析及其对郯庐断裂带的制约[J]. 岩石学报, 2016, 32(4): 950-964.

Lin W, Ji W B, Shi Y H, et al. Structural analysis of the Tongcheng HP-UHP metamorphic belt in the northeastern Dabieshan and its constraint on the Tanlu fault zone[J]. Acta Petrologica Sinica, 2016, 32(4): 950-964.

[35]

黄鹏, 宋传中, 任升莲, 等. 北淮阳构造带的属性及其对板块缝合线位置的启示[J]. 地质学报, 2016, 90(6): 1112-1129.

Huang P, Song C Z, Ren S L, et al. Tectonic property of the Beihuaiyang tectonic belt and its implications for the location of the suture zone between Yangtze block and North China block[J]. Acta Geologica Sinica, 2016, 90(6): 1112-1129.

[36]

Gao X Y, Zhao T P, Zhao J H, et al. Petrogenesis of the Early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie orogen, eastern China:Implications for crust-mantle interaction[J].Journal of Asian Earth Sciences, 2016, 118: 51-67. doi: 10.1016/j.jseaes.2015.12.025

[37]

汤家富, 侯明金. 大别山及邻区若干重要基础地质问题的再认识:再论大别造山带非板块碰撞造山过程[J]. 地学前缘, 2016, 23(4): 1-21.

Tang J F, Hou M J. Re-understanding of some important basic geological issues about Dabieshan and its adjacent regions, China:A further study on the nonplate-collision orogenic process of the Dabie orogen belt[J]. Earth Science Frontiers, 2016, 23(4): 1-21.

[38]

柴广路, 李双应, 谢伟, 等. 北淮阳东段卢镇关群和佛子岭群地层含矿性地球化学评价[J]. 矿床地质, 2018, 37(5): 1111-1123.

Chai G L, Li S Y, Xie W, et al. Geochemical assessment of ore potentiality of Luzhenguan Group and Foziling Group in eastern part of North Huaiyang tectonic belt[J]. Mineral Deposits, 2018, 37(5): 1111-1123.

相似文献(共20条)

[1]

刘昌岭, 林学辉. 单道扫描电感耦合等离子体发射光谱法测定珊瑚礁中主量和微量元素. 岩矿测试, 2003, (3): 225-227.

[2]

何煦, 陈林, 李青会, 顾冬红, 干福熹, 李飞, 李珍. 竹山和马鞍山绿松石微量元素和稀土元素特征. 岩矿测试, 2011, 30(6): 709-713.

[3]

侯天平, 王璞珺, 王松君, 常平. 电感耦合等离子体发射光谱法直接测定黄铜矿中多元素. 岩矿测试, 2004, (3): 228-230.

[4]

赵芝, 付小方, 任希杰, 方一平, 侯立玮, 王登红, 刘丽君. 四川稀土精矿的稀土元素和微量元素地球化学特征及开发利用意义. 岩矿测试, 2013, 32(5): 810-816.

[5]

刘丽君, 赵芝, 付小方, 任希杰, 方一平, 侯立玮, 王登红. 四川稀土矿尾砂的稀土元素和微量元素地球化学特征及开发利用意义. 岩矿测试, 2013, 32(5): 817-824.

[6]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[7]

徐学明, 张培萍. 尿石—发样—土壤中微量元素分析及意义. 岩矿测试, 1999, (4): 280-283.

[8]

詹秀春, 樊兴涛, 巩爱华. 偏振激发-能量色散X射线荧光光谱法测定卤水中主量元素硫氯钾钙. 岩矿测试, 2007, 26(2): 109-112.

[9]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[10]

陈道华, 张欣. 等离子体发射光谱法直接测定海洋沉积物中的微量稀土元素. 岩矿测试, 2003, (1): 61-63.

[11]

王梅英, 李鹏程, 李艳华, 李莹, 王留芳, 陈静. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析. 岩矿测试, 2013, 32(6): 909-914.

[12]

李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

[13]

梁细荣, 李献华. 激光探针等离子体质谱同时测定锆石微区铀—铅年龄及微量元素. 岩矿测试, 1999, (4): 253-258.

[14]

王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证. 岩矿测试, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006

[15]

李迎春, 周伟, 王健, 屈文俊. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素. 岩矿测试, 2013, 32(2): 249-253.

[16]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[17]

张立锋, 刘杰民, 张翼明. 白云鄂博矿区土壤和植物中稀土元素的分布特征. 岩矿测试, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

[18]

侯贤灯. 原子吸收法测定稀土元素进展. 岩矿测试, 1989, (2): 134-138.

[19]

伊丽莹. 地质样品中稀土元素分析进展. 岩矿测试, 1992, (1): 173-178.

[20]

沈恒培. 深海沉积物及多金属结核中微量元素的光谱测定. 岩矿测试, 1997, (2): 91-97.

计量
  • PDF下载量(11)
  • 文章访问量(174)
  • HTML全文浏览量(36)
  • 被引次数(0)
目录

Figures And Tables

北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征

万秋, 李延河, 王利民, 段超, 施珂, 谭德兴