【引用本文】 王頔, . 产铀矿石硅酸盐全分析中铁对五氧化二磷的干扰校正方法[J]. 岩矿测试, 2021, 40(5): 783-792. doi: 10.15898/j.cnki.11-2131/td.202007170104
WANG Di. Corrected Method for Interference of Iron on P2O5 during Complete Silicate Analysis in Uranium-producing Ore[J]. Rock and Mineral Analysis, 2021, 40(5): 783-792. doi: 10.15898/j.cnki.11-2131/td.202007170104

产铀矿石硅酸盐全分析中铁对五氧化二磷的干扰校正方法

广东海洋大学化学与环境学院, 广东 湛江 524088

收稿日期: 2020-07-17  修回日期: 2021-02-14  接受日期: 2021-07-02

基金项目: 广东海洋大学科研启动经费(R20035);广东海洋大学青年教师教学能力培养提升计划

作者简介: 王頔, 博士, 高级工程师, 从事海底自生矿产的可持续发展和海洋高分子水凝胶的功能化研究。E-mail: 50900780@qq.com

Corrected Method for Interference of Iron on P2O5 during Complete Silicate Analysis in Uranium-producing Ore

School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China

Received Date: 2020-07-17
Revised Date: 2021-02-14
Accepted Date: 2021-07-02

摘要:应用碱熔-磷钒钼黄光度法以检测波长420nm分析产铀矿石硅酸盐中P2O5时,样品中共存元素铁与钒钼酸铵显色剂发生络合反应,显现与磷钒钼黄相同的黄色而同时被检测,产生正干扰使P2O5测定结果偏高。本文对碱熔-磷钒钼黄光度法测定产铀矿石硅酸盐P2O5的检测波长进行波长校正消除铁干扰。以Fe2O3作为硅酸盐全分析中铁的考核量,变换检测波长从400nm到480nm,考察Fe2O3不同添加量(0.00~0.70mg/mL)分别对0.20μg/mL、2.00μg/mL和8.00μg/mL P2O5吸光值的影响。实验表明:①当P2O5检测波长从国家标准方法420nm变换到450nm,校正了产铀矿石中铁对P2O5分析结果产生的正干扰。以产铀岩石国家标准物质GBW04117~GBW04122为验证样品,样品中Fe2O3和P2O5的含量均在校正范围内。②在450nm下对产铀岩石、玄武岩、泥质灰岩国家标准物质P2O5进行分析,其结果符合误差要求,方法精密度(RSD)在1.1%~15.7%之间。可以满足硅酸盐样品、产铀矿石等相似基体样品P2O5检测要求。③此波长校正方法操作简单易行,为碱熔-磷钒钼黄光度法测定产铀矿石硅酸盐P2O5提供了方法补充。

关键词: 产铀矿石, 硅酸盐, 五氧化二磷, 磷钒钼黄光度法, , 干扰校正

要点

(1) 以450nm为检测波长可以校正Fe对P2O5分析结果产生的正干扰。

(2) 在450nm校正波长下,样品中Fe2O3和P2O5的含量均在校正范围内。

(3) 该校正方法操作简单易行,为光度法准确测定产铀矿石硅酸盐P2O5提出了方法补充。

Corrected Method for Interference of Iron on P2O5 during Complete Silicate Analysis in Uranium-producing Ore

ABSTRACT

BACKGROUND:

For the determination of P2O5 in complete silicate analysis of uranium-producing ore by alkali fusion-phosphovanoclonolybeate spectrophotometry with wavelength of 420nm, iron (Fe) was detected simultaneously, because Fe as the co-existing element complexed with ammonium vanadium molybdate and showed the same yellow with phosphovanoclonolybeate. Iron produced positive interference on the results of P2O5.

OBJECTIVES:

To correct the interference of Fe on the determination of P2O5.

METHODS:

Taking Fe2O3 as the assessment amount of Fe in complete silicate analysis, when detection wavelength was changed from 400nm to 480nm, the effects of different amounts of Fe2O3 (0.00 to 0.70mg/mL) on the absorption value of P2O5 with content of 0.20g/mL, 2.00g/mL and 8.00g/mL were investigated, respectively.

RESULTS:

(1) It was found that when the detection wavelength of P2O5 was changed from 420nm to 450nm, the positive interference produced by Fe2O3 on the analysis results of P2O5 was corrected. Moreover, the contents of Fe2O3 and P2O5 in the sample was within the calibration range at the correction wavelength of 450nm when taking national standard materials GBW04117-GBW04122 of uranium-producing ore as verification samples. (2) When P2O5 in national standard material of uranium-producing rocks, basalts and argillaceous limestone was analyzed at 450nm, the results were within the error range. The method precision (RSD) was between 1.1% and 15.7%, which met requirements of analyzing P2O5 in other samples with a similar matrix such as silicate and uranium ores.

CONCLUSIONS:

The corrected method is simple and easy to operate. It provides a supplementary method for accurate spectrophotometric determination of P2O5 during complete silicate analysis in uranium-producing ore.

KEY WORDS: uranium-producing ore, silicate, phosphorus pentoxide, phosphovanoclonolybeate spectrophotometry, iron, interference correction

HIGHLIGHTS

(1) The detection wavelength of 450nm corrected the positive interference of Fe on P2O5.

(2) The contents of Fe2O3 and P2O5 in the sample was within the calibration range at the correction wavelength of 450nm.

(3) The corrected method is simple and easy to operate. It provides a supplementary method for accurate spectrophotometric determination of P2O5 during complete silicate analysis in uranium-producing ore.

本文参考文献

[1]

向伟东, 方锡珩, 李田港, 等. 鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J]. 铀矿地质, 2006, 22(5): 257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

Xiang W D, Fang X H, Li T G, et al. Metallogenic characteristics and model of Dongsheng uranium deposit in Ordos Basin, North China[J].Uranium Geology, 2006, 22(5): 257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

[2]

李静. 地质矿物样品中硅酸盐分析[J]. 化工设计通讯, 2021, 47(1): 78-79. doi: 10.3969/j.issn.1003-6490.2021.01.039

Li J. Analysis of silicate in geological mineral samples[J].Chemical Engineering Design Communications, 2021, 47(1): 78-79. doi: 10.3969/j.issn.1003-6490.2021.01.039

[3]

张秀丽. 矿石组分中五氧化二磷分析方法的选择与评价[J]. 新疆有色金属, 2015, (5): 49-51.

Zhang X L. Selection and evaluation of analytical methods for phosphorus pentoxide in ore[J]. Xinjiang Nonferrous Metals, 2015, (5): 49-51.

[4]

张雪峰. 磷矿石中磷的测定方法评述[J]. 新疆有色金属, 2015, (6): 63-67.

Zhang X F. Review of the determination of phosphorus in phosphate ores[J]. Xinjiang Nonferrous Metals, 2015, (6): 63-67.

[5]

张淑娟, 桂素萍, 胡波, 等. 连续流动分析仪法快速测定磷矿中的五氧化二磷[J]. 磷肥与复肥, 2013, 28(6): 65-66. doi: 10.3969/j.issn.1007-6220.2013.06.026

Zhang S J, Gui S P, Hu B, et al. Rapid determination of phosphorus pentoxide in phosphate rock by continuous-flowing analyzer method[J].Phosphate and Compound Fertilizer, 2013, 28(6): 65-66. doi: 10.3969/j.issn.1007-6220.2013.06.026

[6]

夏晶. 磷酸浸渍黏土砖中五氧化二磷含量测定方法的改进[J]. 中国无机分析化学, 2015, 5(2): 50-52. doi: 10.3969/j.issn.2095-1035.2015.02.011

Xia J. Improvement of determination method of phosphorus pentoxide in phosphoric acid impregnated clay brick[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 50-52. doi: 10.3969/j.issn.2095-1035.2015.02.011

[7]

苏武, 李永生. 一种用于湿法磷酸工艺中直接测定超高量P2O5的自动分析法[J]. 应用化学, 2020, 49(1): 50-52.

Su W, Li Y S. An automatic analysis method for directly measuring ultra-high P2O5 in wet process phosphoric acid process[J]. Applied Chemical Industry, 2020, 49(1): 50-52.

[8]

凌进中. 硅酸盐岩石分析50年[J]. 岩矿测试, 2002, 21(2): 129-142. doi: 10.3969/j.issn.0254-5357.2002.02.011

Ling J Z. Silicate rock analysis over the last fifty years[J]. Rock and Mineral Analysis, 2002, 21(2): 129-142. doi: 10.3969/j.issn.0254-5357.2002.02.011

[9]

周存款, 袁永海. X射线荧光光谱法测定硅酸盐和高铁高钛铝土矿中主次组分[J]. 理化检验(化学分册), 2018, 54(3): 303-307.

Zhou C K, Yuan Y H. Determination of major and minor components in silicate and bauxite with high content of iron and titanium by X-ray fluorescence spectrometer[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 303-307.

[10]

Xue D S, Su B X, Zhang D P, et al. Quantitative verifi-cation of 1:100 diluted fused glass beads for X-ray fluorescence analysis of geological specimens[J].Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2826-2833. doi: 10.1039/D0JA00273A

[11]

Amosova A A, Panteeva S V, Chubarov V M, et al. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110mg)[J].Spectrochimica Acta: Part B, 2016, 122: 62-68. doi: 10.1016/j.sab.2016.06.001

[12]

袁建, 刘香英, 夏晨光, 等. 熔融制样-X射线荧光光谱法测定产铀岩石中钨、钼、铌、钽、铁、磷、钒的标准方法[J]. 核化学与放射化学, 2017, 39(5): 362-367.

Yuan J, Liu X Y, Xia C G, et al. Standard method for determination of W, Mo, Nb, Ta, Fe, P, V in uranium-productive rock by X-ray fluorescence spectrometry[J]. Journal of Nuclear and Radiochemistry, 2017, 39(5): 362-367.

[13]

马生凤, 温宏利, 巩爱华, 等. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分[J]. 岩矿测试, 2009, 28(6): 535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

Ma S F, Wen H L, Gong A H, et al. Determination of major components in silicate phase of sulphide ores by ICP-AES with lithium metaborate fusion sample pretreatment[J]. Rock and Mineral Analysis, 2009, 28(6): 535-540. doi: 10.3969/j.issn.0254-5357.2009.06.007

[14]

王小强, 梁倩, 余文丽, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定铁矿石中磷[J]. 中国无机分析化学, 2020, 10(2): 7-10. doi: 10.3969/j.issn.2095-1035.2020.02.002

Wang X Q, Liang Q, Yu W L, et al. Determination of pin iron ores by inductively coupled plasma atomic emission spectrometry[J].Chinses Journal of Inorganic Analytical Chemistry, 2020, 10(2): 7-10. doi: 10.3969/j.issn.2095-1035.2020.02.002

[15]

Thiex N J. Determination of phosphorus and potassium in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry: Single-laboratory validation, first action 2015.18[J].Journal of AOAC International, 2016, 99(4): 914-922. doi: 10.5740/jaoacint.16-0050

[16]

伍耀林. ICP-OES法测试产铀硅酸盐岩石中9元素[J]. 福建分析测试, 2015, 24(5): 60-62. doi: 10.3969/j.issn.1009-8143.2015.05.14

Wu Y L. ICP-OES test of 9 elements in uranium silicate rock[J].Fujian Analysis and Testing, 2015, 24(5): 60-62. doi: 10.3969/j.issn.1009-8143.2015.05.14

[17]

龚明明, 曹淑琴, 孙雪云, 等. 关于我国铀矿冶系统分析实验室检测能力提升的探讨[J]. 铀矿冶, 2017, 36(4): 300-305.

Gong M M, Cao S Q, Sun X Y, et al. Discussion on testing ability promotion of the analysis laboratory in uranium mining and metallurgy system in China[J]. Uranium Mining and Metallurgy, 2017, 36(4): 300-305.

[18]

孙杨, 单婷婷. 碱熔除铁磷酸钼黄光度法测定铁矿石中的五氧化二磷[J]. 吉林地质, 2015, 23(4): 122-123. doi: 10.3969/j.issn.1001-2427.2015.04.027

Sun Y, Shan T T. Alkali fusion to remove iron phosphate molybdenum yellow spectrophotometry for determination of phosphorus pentoxide in iron ore[J].Jinlin Geology, 2015, 23(4): 122-123. doi: 10.3969/j.issn.1001-2427.2015.04.027

[19]

胡璇, 匡玉云, 石磊, 等. 对YS/T 273.9-2006冰晶石中五氧化二磷测定方法的改进[J]. 理化检验(化学分册), 2019, 55(9): 1070-1072.

Hu X, Kuang Y Y, Shi L, et al. Improvement of the method for the determination of phosphorus pentoxide in cryolite in YS/T 273.9-2006[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(9): 1070-1072.

[20]

严四甫, 皮业华. 磷钒钼黄法测定高磷铁矿中磷分析结果偏低的原因探讨[J]. 资源环境与工程, 2007, 21(5): 615-616. doi: 10.3969/j.issn.1671-1211.2007.05.027

Yan S F, Pi Y H. Discussion on the cause of lower analysis result of high-content iron deposit using phosphorus vanadium molybdenum yellow spectrophoto-metry method[J].Resources Environment and Engineering, 2007, 21(5): 615-616. doi: 10.3969/j.issn.1671-1211.2007.05.027

[21]

夏炳训, 宋晓丽, 丁琳, 等. 微波消解-磷钒钼黄光度法测定海洋沉积物中总磷[J]. 岩矿测试, 2011, 30(5): 555-559. doi: 10.3969/j.issn.0254-5357.2011.05.007

Xia B X, Song X L, Ding L, et al. Determination of total phosphorus in marine sediments by microwave digestion-phosphrous vanadium molybdenum yellow spectro-photometry[J]. Rock and Mineral Analysis, 2011, 30(5): 555-559. doi: 10.3969/j.issn.0254-5357.2011.05.007

[22]

王晓英, 王小林, 张源, 等. 磷含量测定研究进展[J]. 染料与染色, 2017, 54(2): 51-56.

Wang X Y, Wang X L, Zhang Y, et al. Research progress of determination for phosphorus[J]. Dyestuffs and Coloration, 2017, 54(2): 51-56.

[23]

许维, 雷坚. 碱熔-钼蓝分光光度法测定赤铁矿中二氧化硅和磷[J]. 化工技术与开发, 2020, 49(4): 51-53. doi: 10.3969/j.issn.1671-9905.2020.04.016

Xu W, Lei J. Spectrophotometric determination of silica and phosphorus in hematite by alkali melting-molybdenum blue method[J].Technology and Development of Chemical Industry, 2020, 49(4): 51-53. doi: 10.3969/j.issn.1671-9905.2020.04.016

[24]

刘保献, 史鑫源, 栾晓佳, 等. 抗坏血酸还原-钼蓝分光光度法测定环境空气中五氧化二磷[J]. 分析试验室, 2015, 34(4): 450-453.

Liu B X, Shi X Y, Luan X J, et al. Determination of phosphorus pentoxide in ambient air by molybdenum blue ascorbiaccid to deoxidize spectrophotometric method[J]. Chinese Journal of Analysis Laboratory, 2015, 34(4): 450-453.

[25]

孛丽娟. 磷钼蓝光度法测定五氧化二磷[J]. 新疆有色金属, 2015, (6): 78-79.

Bo L J. Determination of phosphorus pentoxide by phosphomolybdenum spectrophotometry[J]. Xinjiang Nonferrous Metals, 2015, (6): 78-79.

[26]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011

The editorial committee of 《Rock and mineral analysis》 . Rock and mineral analysis (The fourth edition, Vol.Ⅲ)[M] . Beijing: Geological Publishing House, 2011
[27]

陆杰芬. 碱熔-磷钒钼黄法测定铁、锰矿中的磷[J]. 矿产与地质, 2001, 15(4): 301-302. doi: 10.3969/j.issn.1001-5663.2001.04.017

Lu J F. Determination of phosphorus in iron and manganese ore by alkali fusion-phosphovano -clonolybeate spectrophotometry[J].Mineral Resources and Geology, 2001, 15(4): 301-302. doi: 10.3969/j.issn.1001-5663.2001.04.017

[28]

李蓉, 曹向卉, 杨伟, 等. 分光光度法测定不同食品中磷含量及结果分析[J]. 食品安全质量检测学报, 2018, 9(7): 1706-1710. doi: 10.3969/j.issn.2095-0381.2018.07.041

Li R, Cao X H, Yang W, et al. Determination of phosphorus in different kinds of food by spectro-photometry and analysis of experiment results[J].Journal of Food Safety and Quality, 2018, 9(7): 1706-1710. doi: 10.3969/j.issn.2095-0381.2018.07.041

[29]

刘思琪, 王玉学, 刘环, 等. ICP-OES法分析复杂岩石样品中的硅酸盐九项以及磷元素的干扰校正[J]. 山东化工, 2020, 49(15): 104-107. doi: 10.3969/j.issn.1008-021X.2020.15.043

Liu S Q, Wang Y X, Liu H, et al. Determination of nine silicate terms in complex rock samples by inductively coupled plasma optical emission spectrometry and interference correction of phosphorus[J].Shandong Chemical Industry, 2020, 49(15): 104-107. doi: 10.3969/j.issn.1008-021X.2020.15.043

[30]

王铁, 亢德华, 于媛君, 等. 电感耦合等离子体原子发射光谱法测定钒钛磁铁矿中氧化锰、磷、铜、五氧化二钒、二氧化钛、氧化钙和氧化镁[J]. 冶金分析, 2012, 32(12): 42-46. doi: 10.3969/j.issn.1000-7571.2012.12.008

Wang T, Kang D H, Yu Y J, et al. Determination of manganese oxide, phosphorus, copper, vanadium pentoxide, titanium dioxide, calcium oxide and magnesium oxide in vanadium titano-magnetite ore by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(12): 42-46. doi: 10.3969/j.issn.1000-7571.2012.12.008

[31]

Cavell A J. A rapid method for the determination of nintro-gen, phosphorus and potassium in plant materials[J]. Journal of the Science of Food and Agriculture, 1954, (5): 195-200.

[32]

王斌, 李强. 电感耦合等离子体原子发射光谱法测定铀矿石中全铁[J]. 冶金分析, 2016, 36(4): 66-70.

Wang B, Li Q. Determination of total iron in uranium ore by inductively coupled plasma atomic emission spectro-metry[J]. Metallurgical Analysis, 2016, 36(4): 66-70.

相似文献(共20条)

[1]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[2]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[3]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

夏炳训, 宋晓丽, 丁琳, 姜军成, 杨鲁宁. 微波消解-磷钒钼黄光度法测定海洋沉积物中总磷. 岩矿测试, 2011, 30(5): 555-559.

[6]

吴迎春, 岳宇超, 聂峰. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁. 岩矿测试, 2014, 33(4): 497-500.

[7]

门倩妮, 刘玲, 温良, 黄北川, 周远洋, 许东东. 电感耦合等离子体质谱法测定碳酸盐岩中30种痕量元素及干扰校正研究. 岩矿测试, 2015, 34(4): 420-423. doi: 10.15898/j.cnki.11-2131/td.2015.04.007

[8]

陈菲菲, 冉敬, 徐国栋, 程江, 陈瑜. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法. 岩矿测试, 2021, 40(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.202005310079

[9]

张旺强, 王春妍, 李瑞仙, 巨力佩, 陈月源, 余志峰, 毛振才. 电感耦合等离子体发射光谱法测定富镁铁橄榄岩类矿石中铜镍铁和氧化镁. 岩矿测试, 2011, 30(2): 195-199.

[10]

潘教麦, 刘少民. 铁—磺基水杨酸—二甲氧基羟基苯基荧光酮—TritonX—100体系的光度研究 …. 岩矿测试, 1999, (2): 120-123.

[11]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[12]

杨载明. 二次熔矿方式电感耦合等离子体发射光谱法测定棕刚玉中硅铁钛钙镁锆. 岩矿测试, 2012, 31(4): 617-620.

[13]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁. 岩矿测试, 2012, 31(3): 442-445.

[14]

张耀春. 原子吸收法连续测定铋及氧化铋中铜铅铁镉镍. 岩矿测试, 2003, (1): 70-72.

[15]

刘敬秀. 硅酸盐氧同位素标样研制. 岩矿测试, 1990, (4): 276-282.

[16]

范斌. 交流示波极谱滴定法测定硅酸盐岩石中的钛. 岩矿测试, 1992, (4): 358-358.

[17]

欧阳伦熬. X射线荧光光谱法测定多种铁矿和硅酸盐中主次量组分. 岩矿测试, 2005, (4): 303-306.

[18]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[19]

李迎春, 周伟, 王健, 屈文俊. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素. 岩矿测试, 2013, 32(2): 249-253.

[20]

马毅红, 李钟平, 尹艺青. 离子液体[Emim]PF6-邻二氮菲超声萃取铁尾矿中的铁. 岩矿测试, 2013, 32(3): 456-461.

计量
  • PDF下载量(7)
  • 文章访问量(2497)
  • HTML全文浏览量(706)
  • 被引次数(0)
目录

Figures And Tables

产铀矿石硅酸盐全分析中铁对五氧化二磷的干扰校正方法

王頔