【引用本文】 谢薇, 杨耀栋, 菅桂芹, 等. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究[J]. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063
XIE Wei, YANG Yao-dong, JIAN Gui-qin, et al. A Comparative Study of Four Extractants on the Extraction of Available Selenium in Vegetable and Orchard Soils[J]. Rock and Mineral Analysis, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究

1. 

天津市地质矿产测试中心, 天津 300191

2. 

天津市规划和自然资源局地质事务中心, 天津 300042

收稿日期: 2019-05-15  修回日期: 2019-09-30  接受日期: 2020-04-16

基金项目: 天津市财政资金项目“富硒土地地球化学特征及开发潜力研究”

作者简介: 谢薇, 硕士, 高级工程师, 地球化学专业。E-mail:chinav2012@163.com

通信作者: 杨耀栋, 硕士, 高级工程师, 水工环地质专业。E-mail:fivess@139.com

A Comparative Study of Four Extractants on the Extraction of Available Selenium in Vegetable and Orchard Soils

1. 

Tianjin Geological and Mineral Testing Center, Tianjin 300191, China

2. 

Geological Center of Tianjin Planning and Natural Resources Bureau, Tianjin 300042, China

Corresponding author: YANG Yao-dong, fivess@139.com

Received Date: 2019-05-15
Revised Date: 2019-09-30
Accepted Date: 2020-04-16

摘要:有效硒是评价土壤中硒对植物供给能力的重要指标,我国目前尚无测试有效硒的国家标准方法。浸提剂的选择对于准确测定有效硒的含量至关重要,本文根据浸提的有效硒与硒形态的关联性来确定最优浸提剂种类。实验中选取了碳酸氢钠、磷酸二氢钾、硝酸和盐酸四种浸提剂,对天津果园和菜地的土壤进行有效硒浸提,采用原子荧光光谱法测定各形态硒的含量,并分别对浸提的有效硒与水溶态+离子交换态+碳酸盐结合态硒的最小值、25%处数据值、中位数、75%处数据值和最大值进行比较分析和差异性检验。结果表明:采用碳酸氢钠和磷酸二氢钾提取菜地土壤有效硒的平均含量均约为0.039mg/kg,高于硝酸和盐酸的提取量;采用碳酸氢钠、磷酸二氢钾、硝酸和盐酸提取果园土壤有效硒的含量依次降低。两种土壤中,磷酸二氢钾浸提有效硒的最小值、25%处数据值、中位数、75%处数据值和最大值与水溶态+离子交换态+碳酸盐结合态硒的含量最为接近,而且无显著差异性。研究认为,0.1mol/L磷酸二氢钾适合作为天津果园和菜地土壤有效硒的浸提剂。

关键词: 土壤, , 有效态, 形态分析, 浸提剂, 磷酸二氢钾, 原子荧光光谱法

要点

(1) 根据有效硒与各类硒形态之间的关联性确定最优浸提剂。

(2) 磷酸二氢钾为天津菜地与果园土壤有效硒的最优浸提剂。

(3) 本研究使有效硒浸提剂的选取依据多元化。

A Comparative Study of Four Extractants on the Extraction of Available Selenium in Vegetable and Orchard Soils

ABSTRACT

BACKGROUND:

Available selenium is an important index to evaluate the supply capacity of selenium from soil to plants. However, there is no national standard method to test available selenium in China. The selection of extractants is very important for the accurate determination of available selenium.

OBJECTIVES:

To determine the optimum extractant based on the correlation between available selenium and selenium species.

METHODS:

Four extractants, sodium bicarbonate, potassium dihydrogen phosphate, nitric acid and hydrochloric acid, were selected to extract the available selenium from vegetable and orchard soils in Tianjin. Atomic fluorescence spectrometry was used to determine the content of various forms of selenium, and the minimum, 25 percentile, median, 75 percentile, maximum value of the effective selenium and water-soluble+ion-exchange+carbonate-combined selenium were used for comparative analysis and the difference.

RESULTS:

The average content of available selenium extracted from vegetable soils by sodium bicarbonate and potassium dihydrogen phosphate was 0.039mg/kg, which was higher than that of nitric acid and hydrochloric acid. The contents of available selenium extracted from orchard soils by sodium bicarbonate, potassium dihydrogen phosphate, nitric acid and hydrochloric acid decreased in turn. The minimum, 25 percentile, median, 75 percentile, and maximum values of available selenium extracted by potassium dihydrogen phosphate in the two soils were closer to the content of sum of water-soluble, ion-exchange and carbonate combined selenium.

CONCLUSIONS:

Potassium dihydrogen phosphate with a concentration of 0.1mol/L was the optimum extractant of available Se for vegetable and orchard soils in Tianjin.

KEY WORDS: soil, selenium, available form, speciation analysis, extractants, potassium dihydrogen phosphate, atomic fluorescence spectrometry

HIGHLIGHTS

(1) According to the correlation between available selenium and selenium species, the optimum extractant were determined.

((2) Potassium dihydrogen phosphate was the best extractants of available selenium in vegetable and orchard soils of Tianjin.

((3) The selection basis of effective selenium extractants was diversified.

本文参考文献

[1]

戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015, 52(6): 1356-1364.

Dai H M, Gong C D, Dong B, et al. Distribution of soil selenium in the northeast China plain and its influencing factors[J]. Acta Pedologica Sinica, 2015, 52(6): 1356-1364.

[2]

迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5): 1262-1273.

Chi F Q, Xu Q, Kuang E J, et al. Distribution of selenium and its influencing factors in soils of Heilongjiang Province, China[J]. Acta Pedologica Sinica, 2016, 53(5): 1262-1273.

[3]

秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670.

Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670.

[4]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288.

Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288.

[5]

李杰, 刘久臣, 汤奇峰, 等. 川西高原地区水体中硒含量及分布特征研究[J]. 岩矿测试, 2018, 37(2): 183-192.

Li J, Liu J C, Tang Q F, et al. Study of the contents and distribution of selenium in water samples from the western Sichuan plateau and the incidence of Kaschin beck disease[J]. Rock and Mineral Analysis, 2018, 37(2): 183-192.

[6]

谢薇, 杨耀栋, 侯佳渝, 等. 天津某菜地土壤-蔬菜中硒与重金属含量特征及绿色富硒蔬菜筛选[J]. 环境化学, 2018, 37(12): 2790-2799.

Xie W, Yang Y D, Hou J Y, et al. Characteristics of selenium and heavy metals concentrations in soils and vegetables and screening of green selenium-enriched vegetables in a base of Tianjin[J].Environmental Chemistry, 2018, 37(12): 2790-2799.

[7]

宋晓珂, 王金贵, 李宗仁, 等. 富硒土壤中有效硒浸提剂和浸提条件研究[J]. 中国农学通报, 2018, 34(3): 152-157.

Song X K, Wang J G, Li Z R, et al. Extractants and extraction conditions of soil available selenium in selenium-enriched soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(3): 152-157.

[8]

Keskinen R, Ekholm P, Yli-Halla M, et al. Efficiency of different methods in extracting selenium form agricultural soils of Finland[J].Geoderma, 2009, 153: 87-93.

[9]

Peng Q, Wang D, Wang M K, et al. Prediction of sele-nium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction[J].Environmental Pollution, 2020, 256: 1-10.

[10]

赵成义. 酸性土壤有效态硒浸提方法的研究[J]. 干旱环境监测, 1991, 5(1): 38-41.

Zhao C Y. Studies on the method of the extracted selenium from the acid soil[J].Arid Environmental Monitoring, 1991, 5(1): 38-41.

[11]

李辉勇, 刘鹏, 刘军鸽, 等. 酸性水稻土有效硒提取剂的比较研究[J]. 生态环境, 2003, 12(1): 12-14.

Li H Y, Liu P, Liu J G, et al. Comparative studies on available Se extractants for acid paddy soils[J]. Ecology and Environment, 2003, 12(1): 12-14.

[12]

耿建梅, 王文斌, 罗丹, 等. 不同浸提剂对海南稻田土壤有效硒浸提效果比较[J]. 土壤, 2010, 42(4): 624-629.

Geng J M, Wang W B, Luo D, et al. Comparative studies on effects of several extractants on available selenium of paddy soils in Hainan[J]. Soils, 2010, 42(4): 624-629.

[13]

汤志云, 肖灵, 张培新, 等. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷[J]. 岩矿测试, 2004, 23(3): 173-178.

Tang Z Y, Xiao L, Zhang P X, et al. Determination of available species of As, Se and Sb in soils by HG-AFS[J]. Rock and Mineral Analysis, 2004, 23(3): 173-178.

[14]

瞿建国, 徐伯兴, 龚书椿, 等. 上海不同地区土壤中硒的形态分布及其有效性研究[J]. 土壤学报, 1998, 35(3): 398-403.

Qu J G, Xu B X, Gong S C, et al. Study on speciation distribution and availability of selenium in different soils of Shanghai[J].Acta Pedologica Sinica, 1998, 35(3): 398-403.

[15]

吴雄平, 鲍俊丹, 伊田, 等. 石灰性土壤有效硒浸提剂和浸提条件研究[J]. 农业环境科学学报, 2009, 28(5): 931-936.

Wu X P, Bao J D, Yi T, et al. Extractants and optimum extracting conditions of soil available selenium in calcareous soil[J]. Journal of Agro-Environment Science, 2009, 28(5): 931-936.

[16]

《岩石矿物分析》编委会. 岩石矿物分析(第四版第四分册)[M] . 北京: 地质出版社, 2011: 906-908.

The editorial committee of < Rock and mineral analysis>. . Rock and mineral analysis (The fourth edition:Vol.Ⅳ)[M] . Beijing: Geological Publishing House, 2011: 906-908.
[17]

程素敏, 王娟, 张岩, 等. 土壤样品中砷的形态分析方法研究[J]. 中国无机分析化学, 2016, 6(1): 17-21.

Cheng S M, Wang J, Zhang Y, et al. Study on speciation analysis of arsenic in soil samples[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 17-21.

[18]

王松山.土壤中硒形态和价态及生物有效性研究[D].陕西: 西北农林科技大学, 2012.

Wang S S.Fractionation and speciations of selenium in soil and its bioavailability[D]. Shaanxi: Northwest Agricultural and Forestry University, 2012.

[19]

王兆双.土壤有效硒提取方法比较及其生物有效性研究[D].武汉: 华中农业大学, 2014.

Wang Z S.Comparison of soil available selenium extraction methods and its bioavailability[D]. Wuhan: Huazhong Agricultural University, 2014.

[20]

黄春雷, 魏迎春, 简中华, 等. 浙中典型富硒区土壤硒含量及形态特征[J]. 地球与环境, 2013, 41(2): 155-159.

Huang C L, Wei Y C, Jian Z H, et al. Study on selenium contents and combined forms of typical selenium-rich soil in the central part of Zhejiang Province[J]. Earth and Environment, 2013, 41(2): 155-159.

[21]

中国地质科学院地球物理地球化学勘查研究所.标准物质证书集[M]. 2010: 45-49.

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences.Certificate set of reference materials[M]. 2010: 45-49.

[22]

刘军鸽, 刘鹏, 葛旦之, 等. 淹水土壤有效硒提取剂的比较研究[J]. 湖南农业大学学报, 2000, 26(1): 5-8.

Liu J G, Liu P, Ge D Z, et al. Comparative studies of available Se extracts in flooding soil[J]. Journal of Hunan Agricultural University, 2000, 26(1): 5-8.

[23]

汤丽玲, 范辉, 马生明, 等. AB-DTPA通用提取剂法测定土壤地球化学样品元素有效性的可行性研究[J]. 物探化探计算技术, 2007, 29(Supplement): 238-242.

Tang L L, Fan H, Ma S M, et al. A feasibility study of determining elements in geochemical soil samples by using general extractant AB-DEPA[J].Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(Supplement): 238-242.

[24]

周越, 吴文良, 孟凡乔, 等. 土壤中硒含量、形态及有效性分析[J]. 农业资源与环境学报, 2014, 31(6): 527-532.

Zhou Y, Wu W L, Meng F Q, et al. Review on the content, specification of selenium and its availability in soils[J]. Journal of Agricultural Resources and Environment, 2014, 31(6): 527-532.

[25]

Dean A M, Donald L S. Selenium speciation of soil/sedi-ment determined with sequential extractions and hydride generation atomic absorption spectrophotometry[J].Environmental Science & Technology, 1997, 31: 133-139.

[26]

梁东丽, 彭琴, 崔泽玮, 等. 土壤中硒的形态转化及其对有效性的影响研究进展[J]. 生物技术进展, 2017, 7(5): 374-380.

Liang D L, Peng Q, Cui Z W, et al. Progress on selenium bioavailability and influential factors in soils[J]. Current Biotechnology, 2017, 7(5): 374-380.

[27]

梁若玉, 和娇, 史亚娟, 等. 典型富硒农业基地土壤硒的生物有效性与剖面分布分析[J]. 环境化学, 2017, 36(7): 1588-1595.

Liang R Y, He J, Shi Y J, et al. Bioavailability and profile distribution of selenium in soils of typical Se-enriched agricultural base[J]. Environmental Chemistry, 2017, 36(7): 1588-1595.

[28]

王锐, 余涛, 杨忠芳, 等. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(7): 1648-1654.

Wang R, Yu T, Yang Z F, et al. Bioavailability of soil selenium and its influencing factors in selenium-enriched soil[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7): 1648-1654.

[29]

赵妍, 宗良纲, 曹丹, 等. 江苏省典型茶园土壤硒分布特性及其有效性研究[J]. 农业环境科学学报, 2011, 30(12): 2467-2474.

Zhao Y, Zong L G, Cao D, et al. Distribution and availability of selenium in typical tea garden of Jiangsu Province, China[J]. Journal of Agro-Environment Science, 2011, 30(12): 2467-2474.

[30]

马迅, 宗良纲, 诸旭东, 等. 江西丰城生态硒谷土壤硒有效性及其影响因素[J]. 安全与环境学报, 2017, 17(4): 1588-1593.

Ma X, Zong L G, Zhu X D, et al. Effectiveness and influential factors of soil selenium in selenium valley, Fengcheng, Jiangxi[J]. Journal of Safety and Environment, 2017, 17(4): 1588-1593.

[31]

Yu D S, Liang D L, Lei L M, et al. Selenium geochemical distribution in the environment and predicted human daily dietary intake in northeastern Qinghai, China[J]. Environmental Science and Pollution Research, 2015, 22: 11224-11235.

[32]

王松山, 梁东丽, 魏威, 等. 基于路径分析的土壤硒形态与土壤性质的关系[J]. 土壤学报, 2011, 48(4): 823-830.

Wang S S, Liang D L, Wei W, et al. Relationship between soil physic-chemical properties and selenium species based on path analysis[J]. Acta Pedologica Sinica, 2011, 48(4): 823-830.

[33]

Malisa E P. The behavior of selenium in geological proce-sses[J].Environment Geochemistry and Health, 2001, 23: 137-158.

[34]

姚欢, 宗良纲, 孟蝶, 等. 增施磷肥对提高强酸性高硒茶园土壤硒有效性的效果[J]. 安全与环境学报, 2015, 15(4): 287-292.

Yao H, Zong L G, Meng D, et al. Effect of enhancing availability of selenium by increasing phosphate fertilizer in highly acidic Se-rich soil in tea plantations[J]. Journal of Safety and Environment, 2015, 15(4): 287-292.

[35]

谢珊妮, 宗良纲, 张琪惠, 等. 3种改良剂对强酸性高硒茶园土壤硒有效性调控效果与机理[J]. 茶叶科学, 2017, 37(3): 299-307.

Xie S N, Zong L G, Zhang Q H, et al. Effects of three amendments on selenium availability of highly acidic and Se-rich soil in tea garden and their relative mechanisms[J]. Journal of Tea Science, 2017, 37(3): 299-307.

[36]

赵婉彤.重庆市江津区土壤硒含量分布及影响因素[D].重庆: 西南大学, 2015.

Zhao W T.Study on the distribution and influencing factors of soil Se of Jiangjin district, Chongqing Municipality[D]. Chongqing: Southwest University, 2015.

[37]

郦逸根, 徐静, 李琰, 等. 浙江富硒土壤中硒赋存形态特征[J]. 物探与化探, 2007, 31(2): 95-98.

Li Y G, Xu J, Li Y, et al. The modes of occurrence of selenium in selenium-rich soil of Zhejiang Province[J]. Geophysical and Geochemical Exploration, 2007, 31(2): 95-98.

[38]

罗倩.名山河流域不同土地利用方式土壤硒的形态及其有效性研究[D].成都: 四川农业大学, 2014.

Luo Q.Study on soil selenium species and availability of soil under different land uses in Mingshan River watershed[D]. Chengdu: Sichuan Agricultural University, 2014.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[5]

杨红霞, 刘崴, 李冰. 碘分析方法研究进展. 岩矿测试, 2008, 27(2): 127-136.

[6]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[7]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[8]

邓天龙, 吴怡, 徐青, 廖梦霞. 水环境中氮磷形态分析方法研究进展. 岩矿测试, 2008, 27(2): 137-141.

[9]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[10]

洪翊, 李鉴伦, 何平, 冯超, 李锡坤. 酸性土壤中20种元素有效态浸提体系浅析. 岩矿测试, 2001, (3): 167-173.

[11]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[12]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[13]

李锡坤, , 李鉴伦. 土壤中元素有效态分析质量管理实践. 岩矿测试, 2001, (4): 294-296.

[14]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[15]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[16]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[17]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[18]

任冬, 陈宇豪, 张廷忠. 高压密闭消解技术在土壤有效态样品前处理中的应用. 岩矿测试, 2020, 39(1): 143-149. doi: 10.15898/j.cnki.11-2131/td.201902270027

[19]

李文莉, 李刚. 氢化物-原子荧光法测定铜矿中微量硒和碲. 岩矿测试, 2002, (3): 223-226.

[20]

邱海鸥, 徐国栋, 汤志勇, 王义壮. 原子荧光光谱法用于水系沉积物中迁移毒性态汞的形态分析. 岩矿测试, 2007, 26(5): 359-362.

计量
  • PDF下载量(3)
  • 文章访问量(164)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝