【引用本文】 陈哲, 冯秀娟, 朱易春, 等. 天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究[J]. 岩矿测试, 2020, 39(6): 847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096
CHEN Zhe, FENG Xiu-juan, ZHU Yi-chun, et al. Study on the Passivation Effect of Natural and Modified Attapulgite on Heavy Metal Lead in Soils of the Rare Earth Tailings[J]. Rock and Mineral Analysis, 2020, 39(6): 847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096

天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究

江西理工大学土木与测绘工程学院, 江西 赣州 341000

收稿日期: 2020-06-25  修回日期: 2020-08-21  接受日期: 2020-09-19

基金项目: 国家自然科学基金项目“风化淋积型稀土尾矿残留浸取剂与稀土迁移及演变模型”(51364015)

作者简介: 陈哲, 硕士研究生, 从事土壤生态修复研究。E-mail:15279703750@163.com

通信作者: 冯秀娟, 博士, 教授, 研究方向为城市建设与环境管理、矿山修复污染控制技术。E-mail:fengxj0710@126.com

Study on the Passivation Effect of Natural and Modified Attapulgite on Heavy Metal Lead in Soils of the Rare Earth Tailings

College of Architecture and Mapping, Jiangxi University of Science and Technology, Ganzhou 341000, China

Corresponding author: FENG Xiu-juan, fengxj0710@126.com

Received Date: 2020-06-25
Revised Date: 2020-08-21
Accepted Date: 2020-09-19

摘要:赣南离子型稀土矿的大肆开采,以及尾矿废渣不合理处置,造成矿区周边环境中重金属铅含量超标,破环矿区生态环境。本文利用不同剂量(质量分数分别为5%、10%和15%)的天然及改性凹凸棒作为钝化剂,利用扫描电镜和傅里叶红外光谱对两种钝化剂的表面特征和官能团进行分析,采用BCR重金属连续提取法对钝化能力和效果进行评价,并以此研究土壤中铅的形态变化,借鉴国外的重金属TCLP提取法评估重金属污染土壤的环境质量。结果表明:经过50d的培养,土壤pH值从4.76显著升高至接近7.0。改性后凹凸棒使铅的酸提取态含量从25.69mg/kg降低至7.42mg/kg,并促进其向残渣态转化,残渣态含量比对照组增加了1.38倍,TCLP提取态含量比对照组降低了65.70%,从而显著降低了铅的生物可利用度和生态风险。与天然凹凸棒相比,改性后凹凸棒对稀土尾矿土壤修复具有较为良好的效果。

关键词: 稀土尾矿, 原位钝化, 钝化剂, 重金属形态转化, 土壤修复

要点

(1) 选择盐酸、3-巯基丙基三甲氧基硅烷作为改性剂。

(2) 盐酸和有机物复合改性使得凹凸棒的表面积和官能团提高,较单独改性对铅的钝化能力有显著提高。

(3) 改性凹凸棒较天然凹凸棒使得土壤中的酸提取态含量有所降低,降低了土壤重金属的生物有效性。

Study on the Passivation Effect of Natural and Modified Attapulgite on Heavy Metal Lead in Soils of the Rare Earth Tailings

ABSTRACT

BACKGROUND:

The large-scale mining of ion-type rare earth mines in southern Jiangxi and the unreasonable disposal of tailings and slag caused heavy metal lead content to be deposited in the surrounding environment of the mining area, exceeding the standard level, and destroying the ecological environment of the mining area.

OBJECTIVES:

To passivate the lead in the soil of the mining area to reduce its bioavailability and ecological risks.

METHODS:

Natural and modified attapulgite with different dosages (mass fractions of 5%, 10%, and 15%) were used as passivating agents. Scanning electron microscopy and Fourier infrared were used to analyze the surface characteristics and functional groups of the two passivating agents. Passivation ability and effect were evaluated by BCR continuous extraction method of heavy metals, and form changes of lead in the soil were also studied by this method. Environmental quality of heavy metal contaminated soil was also evaluated using foreign heavy metal TCLP extraction methods.

RESULTS:

After 50 days of cultivation, the modified attapulgite reduced the acid-extracted content of lead from 25.69 to 7.42mg/kg, the residual content increased by 1.38 times and the TCLP extracted content decreased by 65.70% compared to the control group, significantly reducing the bioavailability and ecological risk from lead.

CONCLUSIONS:

Compared with the natural attapulgite, the modified attapulgite has a better effect on the soil remediation of rare earth tailings.

KEY WORDS: rare earth tailings, in situ immobilization, passivating agent, form transformation, soil remediation

HIGHLIGHTS

(1) The reason for choosing hydrochloric acid and 3-mercaptopropyl trimethoxysilane as modifying agent was discussed.

(2) The combined modification of hydrochloric acid and organic compounds simultaneously increased the surface area and functional groups of the attapulgite, which significantly improved the passivation ability of lead compared with the single modification.

(3) Compared with natural attapulgite, modified attapulgite reduced the extraction of acid from the soil and reduced the bioavailability of heavy metals in the soil.

本文参考文献

[1]

张立锋, 刘杰民, 张翼明, 等. 白云鄂博矿区土壤和植物中稀土元素的分布特征[J]. 岩矿测试, 2019, 38(5): 556-564.

Zhang L F, Liu J M, Zhang Y M, et al. Distribution characteristics of rare earth elements in soil and plants in Baiyun Obo mining area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564.

[2]

邹国良, 吴一丁, 蔡嗣经, 等. 离子型稀土矿浸取工艺对资源、环境的影响[J]. 有色金属科学与工程, 2014, 5(2): 100-106.

Zou G L, Wu Y D, Cai S J, et al. Impacts of ion-adsorption rare earth's leaching process on resources and environment[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 100-106.

[3]

王文华, 赵晨, 赵俊霞, 等. 包头某稀土尾矿库周边土壤重金属污染特征与生态风险评价[J]. 金属矿山, 2017, (7): 168-172. doi: 10.3969/j.issn.1001-1250.2017.07.035

Wang W H, Zhao C, Zhao J X, et al. Pollution characteristics and ecological risk assessment of heavy metals in soils around rare tailings in Baotou[J].Metal Mine, 2017, (7): 168-172. doi: 10.3969/j.issn.1001-1250.2017.07.035

[4]

张静, 郑春丽, 王建英, 等. 北方稀土尾矿库周边重金属污染调查[J]. 环境科学与技术, 2016, 39(4): 144-148.

Zhang J, Zheng C L, Wang J Y, et al. Survey of heavy metal pollution nearby a rare earth mine tailing reservoir in North China[J]. Environmental Science & Technology, 2016, 39(4): 144-148.

[5]

Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize?[J].Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018

[6]

Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161

[7]

Tajudin S A A, Azmi M A M, Nabila A T A, et al. Stabilization/solidification remediation method for contaminated soil:A review[J].IOP Science, 2017, 136: 012043.

[8]

谭科艳, 刘晓端, 刘久臣, 等. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究[J]. 岩矿测试, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012

Tan K Y, Liu X D, Liu J C, et al. Research on attapulgite used to repair soil contaminated by copper, zinc and cadmium[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012

[9]

徐婧婧, 赵科理, 叶正钱, 等. 重金属污染土壤原位钝化修复材料的最新研究进展[J]. 环境污染与防治, 2019, 41(7): 852-855.

Xu Q Q, Zhao K L, Ye Z Q, et al. The latest research progress of in-situ passivation remediation materials for heavy metal contaminated soil[J]. Environmental Pollution & Control, 2019, 41(7): 852-855.

[10]

武成辉, 李亮, 雷畅, 等. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 2017, 49(3): 446-452. doi: 10.13758/j.cnki.tr.2017.03.004

Wu C H, Li L, Lie C, et al. Research and application of silicate passivation agent in remediation of heavy metal-contaminated soil:A review[J].Soil, 2017, 49(3): 446-452. doi: 10.13758/j.cnki.tr.2017.03.004

[11]

孙琦, 周宏, 张航, 等. 改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能[J]. 复合材料学报, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002

Sun Q, Zhou H, Zhang H, et al. Mechanical properties and thermoelectric properties of modified attapulgite-graphene oxide/epoxy resin composites[J].Journal of Composite Materials, 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002

[12]

Shahid M, Dumat C, Pourrut B, et al. Assessing the effect of metal speciation on lead toxicity to vicia faba pigment contents[J].Journal of Geochemical Exploration, 2014, 144: 290-297. doi: 10.1016/j.gexplo.2014.01.003

[13]

Xia Z, Baird L, Zimmerman N, et al. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers[J].Applied Surface Science, 2017, 416: 565-573. doi: 10.1016/j.apsusc.2017.04.095

[14]

Liang X, Qin X, Huang Q, et al. Mercapto functionalized sepiolite:A novel and efficient immobilization agent for cadmium polluted soil[J].RSC Advances, 2017, 7(63): 39955-39961. doi: 10.1039/C7RA07893E

[15]

Lei C, Tian X, Ma B, et al. Effect of pH, ionic strength, foreign ions and temperatures on the sorption of Eu(Ⅲ) on attapulgite-iron oxide magnetic composites[J].Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(2): 1127-1135. doi: 10.1007/s10967-013-2480-4

[16]

Liang X X, Ouyang X K, Wang S, et al. Efficient adsorption of Pb(Ⅱ) from aqueous solutions using aminopropyltriethoxysilane-modified magnetic attapulgite@chitosan (APTS-Fe3O4/APT@CS) composite hydrogel beads[J].International Journal of Biological Macromolecules, 2019, 137: 741-750. doi: 10.1016/j.ijbiomac.2019.06.244

[17]

Xia Z, Baird L, Zimmerman N, et al. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers[J].Applied Surface Science, 2017, 416: 565-573. doi: 10.1016/j.apsusc.2017.04.095

[18]

Wang H, Wang X J, Ma J X, et al. Removal of cadmium(Ⅱ) from aqueous solution:A comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater[J].Journal of Hazardous Materials, 2017, 329(17): 66-76.

[19]

Xu C B, Qi J, Yang W J, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J].The Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330

[20]

赵廷伟, 李洪达, 周薇, 等. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783

Zhao T W, Li H D, Zhou W, et al. Effect of application of attapulgite on Cd contaminated farmland soil nutrients[J].Journal of Agricultural Environmental Science, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783

[21]

任静华, 廖启林, 范健, 等. 凹凸棒黏土对镉污染农田的原位钝化修复效果研究[J]. 生态环境学报, 2017, 26(12): 2161-2168. doi: 10.16258/j.cnki.1674-5906.2017.12.022

Ren J W, Liao Q L, Fan J, et al. The effect of attapulgite clay on the in-situ passivation repair of cadmium contaminated farmland[J].Journal of Ecological Environment, 2017, 26(12): 2161-2168. doi: 10.16258/j.cnki.1674-5906.2017.12.022

[22]

刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11): 3679-3687. doi: 10.13671/j.hjkxxb.2014.1044

Liu J J, Yang X, Lu K P, et al. Effect of biomass charcoal on the transformation and effectiveness of heavy metals in soil[J].Journal of Environmental Science, 2015, 35(11): 3679-3687. doi: 10.13671/j.hjkxxb.2014.1044

[23]

邢金峰, 仓龙, 任静华, 等. 重金属污染农田土壤化学钝化修复的稳定性研究进展[J]. 土壤, 2019, 51(2): 224-234.

Xing J F, Cang L, Ren J H, et al. Remediation stability of in situ chemical immobilization of heavy metals contaminated soil:A review[J]. Soils, 2019, 51(2): 224-234.

[24]

吴丽娟, 任兰, 陆喜红, 等. 南京市农用地土壤中重金属形态特征分析[J]. 环境监测管理与技术, 2018, 30(4): 57-59. doi: 10.3969/j.issn.1006-2009.2018.04.014

Wu L J, Ren L, Lu X H, et al. Research on the chemical speciation of heavy metals in agricultural soil in Nanjing[J].The Administration and Technique of Environ-mental Monitoring, 2018, 30(4): 57-59. doi: 10.3969/j.issn.1006-2009.2018.04.014

[25]

Wen J, Yi Y, Zeng G, et al. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J].Journal of Environmental Management, 2016, 178: 63-69. doi: 10.1016/j.jenvman.2016.04.046

[26]

Liang X, Li N, He L, et al. Inhibition of Cd accumulation in winter wheat (Triticum Aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J].The Science of the Total Environment, 2019, 688: 818. doi: 10.1016/j.scitotenv.2019.06.335

[27]

章绍康, 弓晓峰, 申钊颖, 等. 改性凹凸棒土对土壤中Cd2+吸附解吸及钝化效果影响[J]. 环境工程, 2019, 37(3): 192-197.

Zhang S K, Gong X F, Shen Z Y, et al. Effect of modified attapulgite on adsorption and desorption and passivation of Cd2+ in soil[J]. Environmental Engineering, 2019, 37(3): 192-197.

[28]

刘盼盼, 贾莲, 吕琳琳, 等. 鞍山某铁矿区土壤重金属形态分布及生物有效性分析[J]. 矿产保护与利用, 2018, (6): 127-131. doi: 10.13779/j.cnki.issn1001-0076.2018.06.039

Liu P P, Jia L, Lü L L, et al. Chemical forms and bioavailability of heavy metals in soil around an iron mine in Anshan[J].Conservation and Utilization of Mineral Resources, 2018, (6): 127-131. doi: 10.13779/j.cnki.issn1001-0076.2018.06.039

[29]

吴岩, 杜立宇, 梁成华, 等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报, 2018, 32(1): 286-290. doi: 10.13870/j.cnki.stbcxb.2018.01.045

Wu Y, Du L N, Liang C H, et al. Influence of fixed addition of biochar and natural zeolite on the fraction transform of cadmium in different contaminated soil[J].Journal of Soil and Water Conservation, 2018, 32(1): 286-290. doi: 10.13870/j.cnki.stbcxb.2018.01.045

[30]

高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256.

Gao R L, Zhu J, Tang F, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 251-256.

[31]

化党领, 朱利楠, 赵永芹, 等. 膨润土、褐煤及其混合添加对铅、镉复合污染土壤重金属形态的影响[J]. 土壤通报, 2020, 51(1): 201-206.

Hua D L, Zhu L N, Zhao Y Q, et al. Fractions of heavy metals in Cd/Pb contaminated soil amended with bentonite and lignite[J]. Chinese Journal of Soil Science, 2020, 51(1): 201-206.

[32]

南京农业大学. 土壤农化分析(土壤农化专业用)[M] . 北京: 农业出版社, 1986

Nanjing Agricultural University . Soil agrochemical analysis (for soil agrochemical specialty)[M] . Beijing: Agricultural Press, 1986
[33]

Yu K, Xu J, Jiang X, et al. Stabilization of heavy metals in soil using two organo-bentonites[J].Chemosphere, 2017, 184: 884-891. doi: 10.1016/j.chemosphere.2017.06.040

[34]

刘高洁, 周丹丹, 李丽娜, 等. 柠檬酸对生物炭钝化污染土壤中重金属稳定性的影响[J]. 环境化学, 2020, 39(2): 343-351.

Liu G J, Zhou D D, Li L N, et al. Effects of citric acid on the stability of immobilized heavy metals by biochar in contaminated soil[J]. Environmental Chemistry, 2020, 39(2): 343-351.

相似文献(共18条)

[1]

谭科艳, 刘晓端, 刘久臣, 汤奇峰, 黄园英, 罗松光. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究. 岩矿测试, 2011, 30(4): 451-456.

[2]

安茂国, 赵庆令, 谭现锋, 王永刚, 李清彩. 化学还原-稳定化联合修复铬污染场地土壤的效果研究. 岩矿测试, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

[3]

张塞, 于扬, 王登红, 王伟, 张洪果, 岑况. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价. 岩矿测试, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152

[4]

陈燕芳, 刘晓端*, 谭科艳. AB-DTPA提取法在重金属污染土壤修复模拟试验中的应用可行性. 岩矿测试, 2010, 29(2): 131-135.

[5]

陈保冬, 张莘, 伍松林, 李林凤. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用. 岩矿测试, 2019, 38(1): 1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083

[6]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究. 岩矿测试, 2000, (1): 7-13.

[7]

王晓春, 路国慧, 刘晓端, 何俊, 汤奇峰, 徐清, 刘久臣, 罗松光, 杨永亮*. 沈阳细河沿岸土壤中重金属垂直分布特征与形态分析. 岩矿测试, 2010, 29(2): 97-103.

[8]

王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究. 岩矿测试, 2016, 35(4): 425-432. doi: 10.15898/j.cnki.11-2131/td.2016.04.015

[9]

朱志敏, 陈家彪, 李庭学, 陈良, 马定华. 四川拉拉铜矿尾矿中重金属资源和环境意义. 岩矿测试, 2011, 30(1): 43-48.

[10]

陈永宁, 丁相玉, 贾十军, 陈富荣, 邢润华, 王晓莺, 陈兴仁. 合肥市土壤重金属元素异常及其生态效应. 岩矿测试, 2007, 26(4): 275-280.

[11]

王畅, 郭鹏然, 陈杭亭, 舒永红. 土壤和沉积物中重金属生物可利用性的评估. 岩矿测试, 2009, 28(2): 108-112.

[12]

储彬彬, 罗立强. 南京栖霞山铅锌矿地区土壤重金属污染评价. 岩矿测试, 2010, 29(1): 5-8.

[13]

代杰瑞, 庞绪贵, 王红晋, 胡雪平. 山东省济阳县土壤重金属元素异常成因研究. 岩矿测试, 2010, 29(4): 406-410.

[14]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[15]

王腾云, 周国华, 孙彬彬, 贺灵, 曾道明, 陈亚东, 叶荣. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究. 岩矿测试, 2016, 35(3): 295-301. doi: 10.15898/j.cnki.11-2131/td.2016.03.013

[16]

余广学, 张金震, 王烨, 丁莉, 付志辉. 郑州市土壤重金属污染状况和质量评价. 岩矿测试, 2015, 34(3): 340-345. doi: 10.15898/j.cnki.11-2131/td.2015.03.014

[17]

钱贞兵, 孙立剑, 徐升, 陈超, 戴晓峰. 淮河流域安徽段土壤重金属元素分布特征研究. 岩矿测试, 2018, 37(2): 193-200. doi: 10.15898/j.cnki.11-2131/td.201710190168

[18]

罗飞, 巴俊杰, 苏春田, 潘晓东, 杨杨. 武水河上游区域土壤重金属污染风险及来源分析. 岩矿测试, 2019, 38(2): 195-203. doi: 10.15898/j.cnki.11-2131/td.201806040069

计量
  • PDF下载量(8)
  • 文章访问量(576)
  • HTML全文浏览量(116)
  • 被引次数(0)
目录

Figures And Tables

天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究

陈哲, 冯秀娟, 朱易春, 李洞明