【引用本文】 何佳乐, 龚婷婷, 潘忠习, 等. 细微矿物拉曼成像分析技术与方法研究[J]. 岩矿测试, 2021, 40(4): 491-503. doi: 10.15898/j.cnki.11-2131/td.202103080036
HE Jia-le, GONG Ting-ting, PAN Zhong-xi, et al. Raman Imaging Analysis Method of Fine Minerals in Rock Ore[J]. Rock and Mineral Analysis, 2021, 40(4): 491-503. doi: 10.15898/j.cnki.11-2131/td.202103080036

细微矿物拉曼成像分析技术与方法研究

1. 

中国地质调查局成都地质调查中心, 四川 成都 610081

2. 

成都理工大学地球科学学院, 四川 成都 610059

收稿日期: 2021-03-08  修回日期: 2021-05-14  接受日期: 2021-07-02

基金项目: 国家自然科学基金项目“扬子西缘深成造山型丹巴金矿成矿流体成分及来源研究”(42002107)

作者简介: 何佳乐, 硕士, 工程师, 从事岩矿鉴定、流体包裹体、激光拉曼分析工作。E-mail: qianlideguongzhu@163.com

通信作者: 潘忠习, 高级工程师, 从事流体包裹体、激光拉曼分析工作。E-mail: 314160752@qq.com

Raman Imaging Analysis Method of Fine Minerals in Rock Ore

1. 

Chengdu Center of Geological Survey, China Geological Survey, Chengdu 610081, China

2. 

College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

Corresponding author: PAN Zhong-xi, 314160752@qq.com

Received Date: 2021-03-08
Revised Date: 2021-05-14
Accepted Date: 2021-07-02

摘要:岩矿鉴定是各类地质工作开展的基础,其鉴定水平和质量直接影响着工作的深入程度和研究程度。传统鉴定方法受人员自身经验水平、光学显微镜分辨率等因素的影响较大,对于现今需要研究的细微稀有矿物、细粒沉积岩矿物等很难准确地识别鉴定。而依托高精密大型仪器的技术方法多数对样品制备有特殊要求,不利于样品的再利用,诸如扫描电镜、电子探针等在高倍数反射光下探寻、观测特定的细微透明矿物也存在一定的不足。本文将激光拉曼高分辨大面积快速成像方法(StreamLineHR)运用于两块标准岩石光薄片的全区域大面积扫谱,准确识别出其中透明矿物有碱性长石、斜长石、石英、普通角闪石、黑云母、方解石、榍石、磷灰石、锆石和绿帘石,不透明矿物有磁铁矿,部分矿物间存在紧密伴生的情况(如石英与长石、榍石与角闪石)和次生蚀变的情况(如长石碳酸盐化蚀变为方解石)。并以此为基础进行了含量统计,将其分别定名为细粒角闪石英二长闪长岩与细粒黑云母斜长角闪岩。实验过程中,荧光效应,类质同象类矿物(长石、角闪石)峰位相似性和蚀变矿物峰位偏移会对矿物识别、谱图解析造成干扰,可结合矿物镜下光性特征来解决。另外,面扫步长设置越小,分析精确度越高,时间成本也会相应增加,应用时需兼顾考虑。该方法实现了对细微矿物便捷、直观、准确的大范围快速识别鉴定,可弥补传统岩矿鉴定和其他技术方法的不足,拓展了拉曼光谱法在地质工作中的应用范围。

关键词: 激光拉曼光谱, Mapping技术, 快速成像, 岩矿鉴定, 矿物识别

要点

(1) 用StreamLineHR进行细微矿物鉴定并对其组成、含量进行了系统分析。

(2) 分析了实验条件、荧光干扰、谱图解析等对拉曼Mapping测试结果的影响。

(3) 对比了Mapping技术与传统鉴定方法、SEM等其他技术方法间的异同性。

Raman Imaging Analysis Method of Fine Minerals in Rock Ore

ABSTRACT

BACKGROUND:

Mineral identification is the basis of all types of geological work, and its appraisal level and quality directly affect the depth and degree of research of a study. Conventional identification methods are significantly influenced by experience level, optical microscope resolution, and other factors. It is difficult to accurately identify fine rare minerals and clay minerals that need to be studied. Additionally, most of the technical methods relying on high-precision large-scale instruments have special requirements for sample preparation, which is not conducive to the reuse of the samples. It is also inconvenient to explore and observe specific fine transparent minerals under high multiple reflected lights, such as scanning electron microscopy and electron microprobe.

OBJECTIVES:

To develop a more rapid and accurate method for identifying fine minerals.

METHODS:

The laser Raman high-resolution large-area fast imaging method (StreamLineHR) was applied to the whole-area large-area scanning spectrum of two standard rock slices.

RESULTS:

The transparent minerals were identified as alkali feldspar, plagioclase, quartz, amphibole, biotite, calcite, sphene, apatite, zircon, and epidote. The opaque mineral was identified as magnetite. Some of the minerals were closely associated (e.g., quartz and feldspar as well as sphene and hornblende), and some minerals showed secondary alterations (e.g., feldspar was transformed to calcite). Based on the content statistics, the two thin sections were named fine-grained amphibolite monzonite and fine-grained biotite plagioclase amphibolite.

CONCLUSIONS:

Experimental results showed that this method was more accurate than the conventional methods used for the identification of fine minerals with very low content. However, the interference caused by the fluorescence effect, similarity in peak positions of similar minerals (feldspar, amphibole), and shift of the peak position of altered minerals during mineral identification and spectral fitting were solved by combining the optical characteristics under the mineral objective lens when necessary. In addition, the smaller the setting of the surface sweep step size, the more accurate the analysis, and the time cost correspondingly increased. This method realized the rapid identification of fine minerals over a large range, which was convenient, intuitive, and accurate. It compensated for the shortcomings of conventional rock and ore identification and other technical methods and expanded the application scope of Raman spectroscopy in geological studies.

KEY WORDS: laser Raman spectroscopy, Mapping technology, rapid imaging, rock and ore identification, mineral identification

HIGHLIGHTS

(1) StreamLineHR was used to identify fine minerals and to systematically analyze their composition and concentrations.

(2) The effects of experimental conditions, fluorescence interference, and spectral fitting parameters on the Raman mapping results were analyzed.

(3) The differences among the mapping technique, traditional identification methods, SEM, and other technical methods were compared.

本文参考文献

[1]

贾福东, 张长青, 化志新, 等. 云南麻花坪钨铍矿床蓝柱石的鉴定特征及成分与成因分析[J]. 光谱学与光谱分析, 2020, 40(10): 3185-3192.

Jia F D, Zhang C Q, Hua Z X, et al. Identification characteristics, composition and genesis of euclase in Mahuaping tungsten-beryllium polymetallic deposit in Yunnan Province, southwest China[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3185-3192.

[2]

秦亚超, 孙荣涛, 王红, 等. 南黄海西部日照海域海侵沉积地层及其古环境意义[J]. 沉积学报, 2020, 38(4): 790-809.

Qin Y C, Sun R T, Wang H, et al. Transgressive succession offshore rizhao in western South Yellow Sea and paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2020, 38(4): 790-809.

[3]

冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85.

Feng Z H, Liu B, Shao H M, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong Area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85.

[4]

Tian T, Wu H, Kong F F, et al. Fine-grained lithofacies types and sedimentary evolution characteristics of the Lower Es3 to the Upper Es4 of the Eocene Shahejie Formation in Jiyang Depression[J]. International Core Journal of Engineering, 2021, 7(5): 147-160.

[5]

杨富成, 李文昌, 祝向平, 等. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究[J]. 地学前缘, 2020, 27(4): 232-243.

Yang F C, Li W C, Zhu X P, et al. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang County, East Tibet[J]. Earth Science Frontiers, 2020, 27(4): 232-243.

[6]

张殿伟, 郝运轻, 张荣强, 等. 四川盆地湄潭组生烃潜力分析及勘探意义[J]. 沉积学报, 2020, 38(3): 635-647.

Zhang D W, Hao Y Q, Zhang R Q, et al. Hydrocarbon potential analysis and exploration significance of the Meitan Formation, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 635-647.

[7]

文博杰, 陈毓川, 王高尚, 等. 2035年中国能源与矿产资源需求展望[J]. 中国工程科学, 2019, 21(1): 68-73.

Wen B J, Chen Y C, Wang G S, et al. China's demand for energy and mineral resources by 2035[J]. Strategic Study of CAE, 2019, 21(1): 68-73.

[8]

王焰新. "同一健康"视角下医学地质学的创新发展[J]. 地球科学, 2020, 45(4): 1093-1102.

Wang Y X. Innovative development of medical geology: A one health perspective[J]. Earth Science, 2020, 45(4): 1093-1102.

[9]

Chen H W, Lin S G, Li Z G, et al. Comparing arsenic(Ⅴ) adsorption by two types of red soil weathered from granite and sandstone in Hunan, China[J].Environmental Earth Sciences, 2021, 80(10): 376-387. doi: 10.1007/s12665-021-09683-7

[10]

Kirsten M, Mikutta R, Vogel C, et al. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics[J].Scientific Reports, 2021, 11(1): 5076-5088. doi: 10.1038/s41598-021-84777-7

[11]

朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地镇原地区洛河组黏土矿物特征及找铀意义[J]. 大地构造与成矿学, 2020, 44(4): 619-632.

Zhu Q, Li J G, Miao P S, et al. Characteristics of clay minerals in the Luohe Formation in Zhenyuan Area, Ordos Basin, and its uranium prospecting significance[J]. Geotectonica Et Metallogenia, 2020, 44(4): 619-632.

[12]

李光柱, 李梅, 肖赫, 等. 不同粒度下微山稀土矿物颗粒赋存研究[J]. 有色金属(选矿部分), 2021, (1): 1-5.

Li G Z, Li M, Xiao H, et al. Study on the occurrence of rare earth mineral particles in Weishan with different particle sizes[J]. Nonferrous Metals (Mineral Processing Section), 2021, (1): 1-5.

[13]

李余亮. 岩矿鉴定存在的问题与改进方式分析[J]. 冶金管理, 2020, (13): 17-18.

Li Y L. Problems of rock ore appraisal and improvement way analysis[J]. Metallurgical Industry Management, 2020, (13): 17-18.

[14]

Coblinski J A, Inda A V, Demattê J A M, et al. Identification of minerals in subtropical soils with different textural classes by Vis-NIR-SWIR reflectance spectroscopy[J].Catena, 2021, 203: 105334. doi: 10.1016/j.catena.2021.105334

[15]

何佳乐, 潘忠习, 冉敬, 等. 激光拉曼光谱在岩矿鉴定中的应用[J]. 四川地质学报, 2016, 36(2): 346-349. doi: 10.3969/j.issn.1006-0995.2016.02.040

He J L, Pan Z X, Ran J, et al. The application of laser Raman spectroscopy to rock and mineral identification[J].Acta Geologica Sichuan, 2016, 36(2): 346-349. doi: 10.3969/j.issn.1006-0995.2016.02.040

[16]

李映葵, 曹建劲, 吴政权, 等. 内蒙古扎木敖包铁、石墨矿床钻孔样品的NIR和XRD分析[J]. 光谱学与光谱分析, 2015, 35(1): 83-88. doi: 10.3964/j.issn.1000-0593(2015)01-0083-06

Li Y K, Chao J J, Wu Z Q, et al. NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia[J].Spectroscopy and Spectral Analysis, 2015, 35(1): 83-88. doi: 10.3964/j.issn.1000-0593(2015)01-0083-06

[17]

迟广成, 殷晓, 伍月, 等. 扫描电镜/能谱仪用于变质岩中榍石的鉴定[J]. 冶金分析, 2016, 36(4): 11-16.

Chi G C, Yin X, Wu Y, et al. Application of scanning electron microscope/energy dispersive spectrometer in the identification of sphene in metamorphic rock[J]. Metallurgical Analysis, 2016, 36(4): 11-16.

[18]

张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61-73.

Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology to identify minerals and occurrences of elements in sandstone-type uranium deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61-73.

[19]

张贵山, 彭仁, 邱红信, 等. 扫描仪在岩矿鉴定与岩相学研究中的应用——薄片扫描法[J]. 矿物学报, 2020, 40(1): 1-8.

Zhang G S, Peng R, Qiu H X, et al. Application of scanner for the rock-mineral identification and petrography——Thin section scanning method[J]. Acta Mineralogica Sinica, 2020, 40(1): 1-8.

[20]

魏广超, 尤静林, 马楠, 等. 链状硅酸盐矿物的拉曼光谱研究[J]. 光散射学报, 2017, 29(1): 62-69.

Wei G C, You J L, Ma L, et al. Raman spectroscopic study of the chain silicate minerals[J]. The Journal of Light Scattering, 2017, 29(1): 62-69.

[21]

付宛璐, 袁学银. 镁对方解石相变压力和拉曼光谱影响的实验研究[J]. 光谱学与光谱分析, 2019, 39(7): 2053-2058.

Fu W L, Yuan X Y. Study on the influence of magnesium on the phase transition pressures and Raman vibrations of calcite[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2053-2058.

[22]

何佳乐, 潘忠习, 冉敬, 等. 激光拉曼光谱法在单个流体包裹体研究中的应用进展[J]. 岩矿测试, 2015, 34(4): 383-391.

He J L, Pan Z X, Ran J, et al. Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J]. Rock and Mineral Analysis, 2015, 34(4): 383-391.

[23]

宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719.

Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow-green alunite jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719.

[24]

Kouketsu Y, Mizukami T, Mori H, et al. A new approach to develop the Raman carbonaceous material geother-mometer for low-grade metamorphism using peak width[J].Island Arc, 2014, 23(1): 33-50. doi: 10.1111/iar.12057

[25]

张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34.

Zhang C, Xia X H, Yang Y R, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Forma-tion shale of well Anye-1 and its geological signific-ance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34.

[26]

Zhang S Y, Chen H, Li R Y, et al. Raman spectroscopy and mapping technique for the identification of expired drugs[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224: 1386-1425.

[27]

刘丹童, 宋洋, 李菲菲, 等. 基于显微拉曼面扫的小尺寸微塑料检测方法[J]. 中国环境科学, 2020, 40(10): 4429-4438. doi: 10.3969/j.issn.1000-6923.2020.10.029

Liu D T, Song Y, Li F F, et al. A detection method of small-sized microplastics based on micro-Raman mapping[J].China Environmental Science, 2020, 40(10): 4429-4438. doi: 10.3969/j.issn.1000-6923.2020.10.029

[28]

崔楠楠, 杜增丰, 张鑫, 等. 共聚焦拉曼光谱在贻贝介壳探测中的应用[J]. 光谱学与光谱分析, 2020, 40(3): 750-754.

Cui N N, Du Z F, Zhang X, et al. The application of confocal Raman spectroscopy in mussels shell[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 750-754.

[29]

Fernando P A, Niels H, Philippe M, et al. High spatial resolution Raman mapping of complex mineral assemblages: Application on phosphate mineral sequences in pegmatites[J]. Journal of Raman Spectroscopy, 2020, 52(3): 690-708.

[30]

Chu H X, Chi G X, Xue C J, et al. Quantification of solute composition in H2O-NaCl-CaCl2 solutions using cryogenic 2D Raman mapping[J].Minerals, 2020, 10(11): 1043. doi: 10.3390/min10111043

[31]

Burke E A J. Raman microspectrometry of fluid inclusions[J].Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8

[32]

常丽华,陈曼云,金巍. 透明矿物薄片鉴定手册[M] . 北京: 地质出版社, 2006

Chang L H,Chen M Y,Jin W. Handbook for the identification of transparent mineral flakes[M] . Beijing: Geological Publishing House, 2006
[33]

谢俊. 铝硅酸盐精细结构及长石的拉曼光谱研究[D]. 北京: 中国地质大学(北京), 2008.

Xie J. A Raman spectroscopy study of hyperfine structure of aluminosilicate and feldspar[D]. Beijing: China University of Geosciences(Beijing), 2008.

[34]

韩景仪,郭立鹤,陈伟. 矿物拉曼光谱图集[M] . 北京: 地质出版社, 2016: 147-151.

Han J Y,Guo L H,Chen W. Raman spectral atlas of minerals[M] . Beijing: Geological Publishing House, 2016: 147-151.
[35]

刘伟. 碱性长石在次固相下的微组构重组织: 碱性长石流体相互作用[J]. 地学前缘, 2001, 8(4): 391-397. doi: 10.3321/j.issn:1005-2321.2001.04.020

Liu W. Microtextural reorganization of alkali feldspar during deuteric alteration: Alkali feldspar-fluid interaction[J].Earth Science Frontiers, 2001, 8(4): 391-397. doi: 10.3321/j.issn:1005-2321.2001.04.020

[36]

Lazarev A N, Tenisheva T F. The vibration spectra and structures of some rare earth element silicates[J].Russian Chemical Bulletin, 1961, 10(6): 894-901. doi: 10.1007/BF00909154

[37]

Blaha J J, Rosasco G J. Raman microprobe spectra of individual microcrystals and fibers of talc, tremolite, and related silicate minerals[J].Analytical Chemistry, 1978, 50(7): 892-896. doi: 10.1021/ac50029a018

[38]

Wang A, Dhamelincourt P, Turrell G, et al. Raman micro-spectroscopic study of the cation distribution in amphiboles[J].Applied Spectroscopy, 1988, 42(8): 1441-1450. doi: 10.1366/0003702884429490

[39]

黄恩萍. 角闪石类矿物之拉曼光谱研究[D]. 台北: 国立成功大学, 2003.

Huang E P. Raman spectroscopic study of amphiboles[D]. Taipei: National Cheng Gung University, 2003.

[40]

代路路, 姜炎, 杨明星, 等. "黑青""黑碧"的谱学鉴别特征探究[J]. 光谱学与光谱分析, 2021, 41(1): 292-298.

Dai L L, Jiang Y, Yang M X, et al. Study on the spectral identification characteristics of "Heiqing" and "Heibi"[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 292-298.

[41]

Frezzotti M L, Tecce F, Casagli A, et al. Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009

[42]

沈昆, 舒磊, 刘鹏瑞, 等. 山东邹平王家庄铜(钼)矿床蚀变围岩中含云母流体包裹体的成因及其意义[J]. 岩石学报, 2018, 34(12): 3509-3524.

Shen K, Shu L, Liu P R, et al. Origin and significance of mica-bearing fluid inclusions in the altered wallrocks of the Wangjiazhuang copper-molybdenum deposit, Zouping County, Shandong Province[J]. Acta Petrologica Sinica, 2018, 34(12): 3509-3524.

相似文献(共20条)

[1]

周姣花, 汪建宇, 顾茗心, 王真. 利用X射线衍射和岩矿鉴定等技术研究河南汤家坪钼矿区主要矿物标型特征. 岩矿测试, 2015, 34(1): 82-90. doi: 10.15898/j.cnki.11-2131/td.2015.01.011

[2]

晋玉秀, 甘树才, 王林根, 来雅文. 峨嵋玄武岩流体包裹体中铂钯的测定方法研究. 岩矿测试, 2004, (4): 260-262267.

[3]

夏宁, 刘昌岭, 业渝光, 孟庆国, 林学辉, 贺行良. 显微激光拉曼光谱测定天然气水合物的方法研究. 岩矿测试, 2011, 30(4): 416-422.

[4]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[5]

左兆喜, 陈尚斌, 史乾, 韩宇富. 激光拉曼法在高-过成熟页岩及煤成熟度评价中的应用. 岩矿测试, 2016, 35(2): 193-198. doi: 10.15898/j.cnki.11-2131/td.2016.02.012

[6]

周金生. 地质实验测试科技八五进展及九五发展计划设想. 岩矿测试, 1996, (1): 42-.

[7]

谭靖, 郭冬发, 张彦辉, 张良圣, 夏晨光, 谢胜凯, 李伯平. 常见岩石矿物微区特征信息激光剥蚀光谱快速识别技术研究. 岩矿测试, 2012, 31(5): 807-813.

[8]

王轶, 常娜, 刘亚非, 赵慧博, 刘三. 应用X射线衍射-激光拉曼-电子探针等分析测试技术研究旬阳朱砂玉的矿物学特征. 岩矿测试, 2014, 33(6): 802-807. doi: 10.15898/j.cnki.11-2131/td.2014.06.007

[9]

宁珮莹, 张天阳, 马泓, 谢俊, 丁汀, 黎辉煌, 梁榕. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033

[10]

胡勇平, 于学峰, 郑林伟, 郑遗凡. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征. 岩矿测试, 2015, 34(6): 643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007

[11]

许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

[12]

黄文清, 金绪广, 左锐, 晁东娟, 杨桂群, 薛盼, 陈小军, 张锦雯. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

[13]

段玉然, 李维华. 香花石包头矿黄河矿及蓟县矿的拉曼光谱特征. 岩矿测试, 1998, (3): 181-184.

[14]

陈安福. 拉曼光谱在矿物包裹体成分分析中的应用. 岩矿测试, 1985, (3): 231-237.

[15]

迟广成, 伍月, 王海娇, 陈英丽, 王大千. X射线荧光光谱分析技术在大理岩鉴定与分类中的应用. 岩矿测试, 2018, 37(1): 43-49. doi: 10.15898/j.cnki.11-2131/td.201611300176

[16]

张玉芳, 林锦璇. 计算机在岩矿测试数据处理方面的应用实例砂矿物鉴定数据处理程序. 岩矿测试, 1985, (2): 173-175.

[17]

杜谷, 王坤阳, 冉敬, 王风玉, 潘忠习. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用. 岩矿测试, 2014, 33(5): 625-633.

[18]

张志坚, 何谋春. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 2001, (1): 43-47.

[19]

王强, 陈勇, 马在平, 颜世永, 张娟, 刘超英, 周瑶琪. 低温加热后伊利石的激光拉曼光谱特征. 岩矿测试, 2007, 26(3): 188-192.

[20]

何谋春, 吕新彪, 邹晓艳. 常见酸根离子浓度的激光拉曼光谱定量分析. 岩矿测试, 2007, 26(1): 26-28.

计量
  • PDF下载量(6)
  • 文章访问量(1005)
  • HTML全文浏览量(34)
  • 被引次数(0)
目录

Figures And Tables

细微矿物拉曼成像分析技术与方法研究

何佳乐, 龚婷婷, 潘忠习, 杜谷