【引用本文】 胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110
HU Jian-ping, WANG Ri-zhong, DU Bao-hua, et al. Determination of Silver, Copper, Lead and Zinc in Sulfide Ores by Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110

火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌

湖南省核工业地质局放射性核素检测中心, 湖南 长沙 410100

收稿日期: 2017-06-27  修回日期: 2018-03-28  接受日期: 2018-05-07

基金项目: 中国冶金地质总局山东局青年科技基金项目;湖南省电离辐射计量与仪器工程技术研究中心项目(2016TP2011)

作者简介: 胡健平, 硕士, 工程师, 主要从事理化检测研究工作。E-mail:hujp2690@qq.com

Determination of Silver, Copper, Lead and Zinc in Sulfide Ores by Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma-Optical Emission Spectrometry

Radionuclide Testing Center of Hunan Nuclear Geological Bureau, Changsha 410100, China

Received Date: 2017-06-27
Revised Date: 2018-03-28
Accepted Date: 2018-05-07

摘要:过渡金属Cu、Co、Ni、Zn、Pb等及贵金属元素(铂族元素和Au、Ag)高度富集在硫化物中,尤其是富集在岩浆硫化物中,常形成具有工业开采价值的矿产,因而硫化物矿物具有重大的经济价值。而硫化物矿种类多,不同类型硫化物矿中Ag、Cu、Pb、Zn含量高低不同,有些被强酸分解不完全,产生沉淀,导致检测结果波动性较大、精密度偏低。本文针对含黄铁矿、铅和铜分别以方铅矿和黄铜矿形式存在的较难溶的硫化物矿,在矿样中先加盐酸加热除硫后,再用硝酸-氢氟酸-高氯酸三种强酸分解,以新配制的王水提取,使该类样品获得了理想的分解效果,特别是对银、铅含量较高的样品分解效果改善较显著。试液用火焰原子吸收光谱和电感耦合等离子体发射光谱都能准确测定Ag、Cu、Pb、Zn,两种方法的相对误差在±2.32%以内,测定值基本一致,相对标准偏差(RSD,n=12)均小于3.5%,四个元素的检出限均低于0.0090 μg/mL,低于文献检出限。

关键词: 硫化矿, 硝酸-氢氟酸-高氯酸分解, 王水提取, 火焰原子吸收光谱法, 电感耦合等离子体发射光谱法

要点

(1) 对含黄铁矿等难溶硫化物矿的分解、复溶介质及浓度和谱线选择等实验条件进行了优化。

(2) 对于银、铅含量较高的硫化物矿,试液中保持王水介质的体积分数达15%,银和铅可以二氯络银(Ⅰ)四氯络铅(Ⅱ)络离子形式稳定于试液中,保证了测定结果不偏低。

(3) 火焰原子吸收光谱法和电感耦合等离子体发射光谱法都能准确测定硫化物矿中的银铜铅锌,检出限均低于0.0090 μg/mL。

Determination of Silver, Copper, Lead and Zinc in Sulfide Ores by Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma-Optical Emission Spectrometry

ABSTRACT

BACKGROUND:

The transition metals copper, cobalt, nickel, zinc, lead and the noble metal elements (the platinum family elements gold, and silver) are highly enriched in sulfide minerals, especially in magmatic sulfides. Sulfides commonly form large ore deposits of industrial significance, which makes sulfide minerals of great economic value. There are many kinds of sulfide ores, and the contents of Ag, Cu, Pb and Zn in different types of sulfide ores vary. Some sulfide ores cannot be decomposed completely by strong acid and therefore precipitation forms, resulting in large errors and low precision.

OBJECTIVES:

Investigate different digestion conditions in order to decompose, dissolved sulfide ores containing pyrite, galena and chalcopyrite.

METHODS:

The sulfide ores are reacted with hydrochloric acid to remove the sulfur, and then digested by HNO3-HF-HClO4. Newly prepared aqua regia is used to further dissolve metals. The contents of silver, copper, lead and zinc in sulfide ores are determined by Flame Atomic Absorption Spectrometry (FAAS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES).

RESULTS:

The results show that sulfide ores can be decomposed ideally using the proposed procedure, especially for sulfide ores with high contents of silver and lead. The contents of silver, copper, lead and zinc in sulfide ores can be determined accurately by both FAAS and ICP-OES with a relative error of two methods of less than ±2.32%. The measured values are the same with the relative standard deviation(RSD, n=12) less than 3.5%. The detection limit of the four elements is below 0.0090 μg/mL, lower than current published values.

CONCLUSIONS:

This method can be used to obtain an ideal decomposition effect, especially for high content silver and lead sulfide ore samples.

KEY WORDS: sulfide ores, HNO3-HF-HClO4 acid decomposition, aqua regia extraction, Flame Atomic Absorption Spectrometry, Inductively Coupled Plasma-Optical Emission Spectrometry

HIGHLIGHTS

(1) Different experimental conditions are carried out on insoluble sulfide ores, including decomposition, re-decomposition medium and concentration, and spectral line.

(2) For sulfide ores with high Ag and Pb, Ag and Pb are stable in the form of Ag(Ⅰ)-Cl and Pb(Ⅱ)-Cl complex in the 15% of aqua regia.

(3) The detection limits of Ag, Cu, Pb and Zn by FAAS and ICP-OES are below 0.0090 μg/mL.

本文参考文献

[1]

崔师泉. 火焰原子吸收光谱法测定矿石中的银[J]. 新疆有色金属, 2007, (Supplement): 83-84.

Cui S Q. Determination of silver in ore by flame atomic absorption spectrometry[J]. Xinjiang Non-Ferrous Metal, 2007, (Supplement): 83-84.

[2]

付桂花. 火焰原子吸收光谱法快速测定矿石中的多金属元素银、铜、铅、锌[J]. 四川地质学报, 2013, 33(Supplement): 170-172.

Fu G H. Determination of silver, copper, lead, and zinc in ore by flame atomic absorption spectrometry[J].Acta Geologica Sichuan, 2013, 33(Supplement): 170-172.

[3]

温盛霞, 孙集平, 薛静, 等. 盐酸介质-火焰原子吸收光谱法测定矿石中铜、铅、锌和银[J]. 有色矿冶, 2014, 30(2): 98-100. doi: 10.3969/j.issn.1007-967X.2014.02.037

Wen S X, Sun J P, Xue J, et al. Determination of copper, lead, zinc and silver in ore by flame atomic absorption spectrometry in hydrochloric acid medium[J].Non-Ferrous Mining and Metallurgy, 2014, 30(2): 98-100. doi: 10.3969/j.issn.1007-967X.2014.02.037

[4]

孔令强, 立为彦, 邵国强, 等. 原子吸收光谱法连续测定金精矿中的银铜铅锌[J]. 黄金, 2016, 37(11): 73-75. doi: 10.11792/hj20161119

Kong L Q, Li W Y, Shao G Q, et al. Continuous determination of silver, copper, lead and zinc in gold concentrates by atomic absorption spectrometry[J].Gold, 2016, 37(11): 73-75. doi: 10.11792/hj20161119

[5]

文双辉. 火焰原子吸收法测定地质样品中高含量的铜铅锌银[J]. 地球, 2014, (7): 211-217.

Wen S H. Determination of high content of copper lead zinc in geological samples by flame atomic absorption spectrometry[J].The Earth, 2014, (7): 211-217.

[6]

夏辉, 王小强, 杜天军, 等. 五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J]. 岩矿测试, 2015, 34(3): 297-301.

Xia H, Wang X Q, Du T J, et al. Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3): 297-301.

[7]

秦立俊, 卞光宏, 王雪婷, 等. 微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法测定锌精矿中银含量[J]. 铁合金, 2012, (2): 43-45. doi: 10.3969/j.issn.1001-1943.2012.02.012

Qin L J, Bian G H, Wang X T, et al. Determination of Ag content in Zn concentrate by microwave digestion & ICP-AES[J].Ferro-Alloys, 2012, (2): 43-45. doi: 10.3969/j.issn.1001-1943.2012.02.012

[8]

范丽新, 王杰. 电感耦合等离子体原子发射光谱法(ICP-AES)测定铜磁铁矿中的Al, Ni, Cu, Mg, Pb, Zn 6种元素[J]. 中国无机分析化学, 2015, 5(1): 53-55. doi: 10.3969/j.issn.2095-1035.2015.01.015

Fan L X, Wang J. Simultanuous determination of Al, Ni, Cu, Mg, Pb and Zn in copper magnetite by inductively coupled plasma atomic emission spectrometry (ICP-AES)[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1): 53-55. doi: 10.3969/j.issn.2095-1035.2015.01.015

[9]

陆青, 范丽新, 李建强, 等. 电感耦合等离子体原子发射光谱法测定钼铌合金中8种元素[J]. 冶金分析, 2017, 37(3): 64-69.

Lu Q, Fan L X, Li J Q, et al. Determination of eight elements in niobium-molybdenum alloy by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(3): 64-69.

[10]

张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933.

Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7): 930-933.

[11]

范丽新. 电感耦合等离子体原子发射光谱法测定铅锌混合精矿中的Cu, Cd, Fe, As, Ag, Al 6种元素[J]. 中国无机分析化学, 2013, 3(3): 30-32. doi: 10.3969/j.issn.2095-1035.2013.03.008

Fan L X. Simultaneous determination of six elements (Cu, Cd, Fe, As, Ag and Al) in zinc-lead bulk concentrate by inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3): 30-32. doi: 10.3969/j.issn.2095-1035.2013.03.008

[12]

马生凤, 温宏利, 马新荣, 等. 四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J]. 矿物岩石地球化学通报, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010

Ma S F, Wen H L, Ma X R, et al. Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010

[13]

闵国华, 张庆建, 刘稚, 等. 电感耦合等离子体原子发射光谱法测定铅矿、锌矿和铅锌矿中杂质元素[J]. 冶金分析, 2014, 34(5): 51-55.

Min G H, Zhang Q J, Liu Z, et al. Determination of impurity elements in lead ore, zinc ore and lead-zinc ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2014, 34(5): 51-55.

[14]

王成, 赵淑云, 肖丽梅, 等. 电感耦合等离子体发射光谱法和火焰原子吸收光谱法测定铜锍及含铜烧结物料中银[J]. 冶金分析, 2011, 31(7): 61-64. doi: 10.3969/j.issn.1000-7571.2011.07.013

Wang C, Zhao S Y, Xiao L M, et al. Determination of silver in copper matte and copper-bearing sintering materials by inductively coupled plasma atomic emission spectrometry and flame atomic absorption spectrometry[J].Metallurgical Analysis, 2011, 31(7): 61-64. doi: 10.3969/j.issn.1000-7571.2011.07.013

[15]

于阗, 张连起, 陈小迪, 等. 电感耦合等离子体发射光谱法和火焰原子吸收光谱法连续测定化探样品中12个元素[J]. 岩矿测试, 2011, 30(1): 71-74.

Yu T, Zhang L Q, Chen X D, et al. Continuous determination of 12 elements in geochemical samples by inductively coupled plasma-atomic emission spectrometry and flame atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 71-74.

[16]

王松君, 常平, 王璞珺, 等. ICP-AES法测定方铅矿中多元素的方法研究[J]. 分析试验室, 2007, 26(3): 39-42. doi: 10.3969/j.issn.1000-0720.2007.03.010

Wang S J, Chang P, Wang P J, et al. Study on determination of multi elements in galena by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Analysis Laboratory, 2007, 26(3): 39-42. doi: 10.3969/j.issn.1000-0720.2007.03.010

[17]

宋晓红, 冯旭, 段伟亚, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定硫化物矿石中的14种微量元素[J]. 中国无机分析化学, 2014, 4(2): 36-38. doi: 10.3969/j.issn.2095-1035.2014.02.010

Song X H, Feng X, Duan W Y, et al. Determination of 14 kinds of major and minor elements in sulfide ore by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(2): 36-38. doi: 10.3969/j.issn.2095-1035.2014.02.010

[18]

宋召霞, 高云, 张志刚, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定硫化物矿石中的铜铅锌[J]. 中国无机分析化学, 2017, 7(1): 35-38. doi: 10.3969/j.issn.2095-1035.2017.01.009

Song Z X, Gao Y, Zhang Z G, et al. Determination of copper, lead and zinc in sulphide ores by inductively coupled plasma atomic emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(1): 35-38. doi: 10.3969/j.issn.2095-1035.2017.01.009

[19]

温宏利, 马生凤, 马新荣, 等. 王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素[J]. 岩矿测试, 2011, 30(5): 566-571. doi: 10.3969/j.issn.0254-5357.2011.05.009

Wen H L, Ma S F, Ma X R, et al. Simultaneous determination of 8 elemental components of Fe, Cu, Zn and Pb in sulfide ores by ICP-AES with aqua regia digestion[J]. Rock and Mineral Analysis, 2011, 30(5): 566-571. doi: 10.3969/j.issn.0254-5357.2011.05.009

相似文献(共20条)

[1]

秦颍, 董亚巍, 魏国锋, 韩楚文, 曲毅, 王昌燧. 大冶李德贵冶炼遗址矿冶遗物分析. 岩矿测试, 2008, 27(2): 99-102.

[2]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[3]

于阗, 张连起, 陈小迪. 电感耦合等离子体发射光谱法和火焰原子吸收光谱法连续测定化探样品中12个元素. 岩矿测试, 2011, 30(1): 71-74.

[4]

葛艳梅. 王水溶样-火焰原子吸收光谱法直接测定高品位金矿石的金量. 岩矿测试, 2014, 33(4): 491-496.

[5]

张旺强, 王春妍, 陈月源, 巨力佩, 李瑞仙. 高氯酸-盐酸体系-火焰原子吸收光谱法测定铅精粉中的银. 岩矿测试, 2010, 29(6): 707-710.

[6]

王慧, 刘烽, 许玉宇, 俞璐, 吴骋, 王国新. 火焰原子吸收光谱法测定红土镍矿中的铅. 岩矿测试, 2012, 31(3): 434-437.

[7]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[8]

温宏利, 马生凤, 马新荣, 王蕾, 范凡, 巩爱华. 王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素. 岩矿测试, 2011, 30(5): 566-571.

[9]

德国耶拿分析仪器股份公司. 火焰原子吸收光谱法测定井水中的钙铁钾镁钠. 岩矿测试, 2007, 26(4): 347-348.

[10]

德国耶拿分析仪器股份公司. 连续光源火焰原子吸收光谱法测定井水中钙铁钾镁钠. 岩矿测试, 2007, 26(6): 511-511.

[11]

德国耶拿分析仪器股份公司. 连续光源火焰原子吸收光谱法测定水悬浮液中的硅. 岩矿测试, 2008, 27(4): 文后I-文后I.

[12]

杨载明. 二次熔矿方式电感耦合等离子体发射光谱法测定棕刚玉中硅铁钛钙镁锆. 岩矿测试, 2012, 31(4): 617-620.

[13]

刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896.

[14]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[15]

李清彩, 赵庆令, 安茂国, 孙宁, 张守文. 电感耦合等离子体发射光谱法测定地热水中的硫化物. 岩矿测试, 2017, 36(3): 239-245. doi: 10.15898/j.cnki.11-2131/td.201612120181

[16]

王国新, 许玉宇, 王慧, 刘烽, 吴骋, 胡清. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴铜. 岩矿测试, 2011, 30(5): 572-575.

[17]

杜梅, 刘晓杰. 电感耦合等离子体发射光谱法测定包头稀土矿中的稀土总量. 岩矿测试, 2014, 33(2): 218-223.

[18]

王蕾, 温宏利, 马新荣, 张保科, 马生凤, 许俊玉, 巩爱华. 电感耦合等离子体发射光谱法测定硫化物矿中的高含量铅. 岩矿测试, 2011, 30(3): 305-309.

[19]

何小辉, 白金峰, 陈卫明, 张勤. 流动注射-火焰原子吸收光谱法测定地质样品中的常量金. 岩矿测试, 2011, 30(1): 79-82.

[20]

马生凤, 温宏利, 赵怀颖, 孙红宾, 巩爱华. 氨水提取-电感耦合等离子体发射光谱法测定海洋沉积物中的氯. 岩矿测试, 2013, 32(1): 40-43.

计量
  • PDF下载量(40)
  • 文章访问量(553)
  • HTML全文浏览量(241)
  • 被引次数(0)
目录

Figures And Tables

火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌

胡健平, 王日中, 杜宝华, 盛迪波, 罗志翔