【引用本文】 金贵善, 刘汉彬, 韩娟, 等. 镀镍碳为还原剂在线高温裂解法测定硫酸钡中氧同位素组成[J]. 岩矿测试, 2019, 38(4): 365-372. doi: 10.15898/j.cnki.11-2131/td.201809090103
JIN Gui-shan, LIU Han-bin, HAN Juan, et al. Determination of Oxygen Isotopic Composition in Barium Sulfate by Online Pyrolysis Method with Nickel-plated Carbon as Reductant[J]. Rock and Mineral Analysis, 2019, 38(4): 365-372. doi: 10.15898/j.cnki.11-2131/td.201809090103

镀镍碳为还原剂在线高温裂解法测定硫酸钡中氧同位素组成

核工业北京地质研究院, 北京 100029

收稿日期: 2018-09-09  修回日期: 2019-03-11  接受日期: 2018-04-09

基金项目: 国家重点研发计划项目"华南热液型铀矿基地深部探测技术示范"(2017YFC0602600)

作者简介: 金贵善, 高级工程师, 主要从事同位素地球化学研究。E-mail:16626162@qq.com

通信作者: 刘汉彬, 研究员, 主要从事同位素地球化学研究。E-mail:hanbinliu@sina.com

Determination of Oxygen Isotopic Composition in Barium Sulfate by Online Pyrolysis Method with Nickel-plated Carbon as Reductant

Beijing Research Institute of Uranium Geology, Beijing 100029, China

Corresponding author: LIU Han-bin, hanbinliu@sina.com

Received Date: 2018-09-09
Revised Date: 2019-03-11
Accepted Date: 2018-04-09

摘要:测定矿物或水中硫酸根的氧同位素组成(δ18O)能够识别物质来源及转化过程,常用的方法是将硫酸根转化为硫酸钡再用离线或在线法测试其δ18O值。目前普遍采用1420℃在线测试硫酸钡的氧同位素组成,该方法极易缩短反应炉的寿命,通过添加还原剂碳可以降低反应温度,但是已有报道对于添加还原剂后的反应温度讨论较少。本文选择镀镍碳(Ni-C)作为还原剂,将样品经Ni-C高温处理后进行一系列条件实验,确认了采用元素分析仪-稳定同位素质谱仪(EA-IRMS)测定硫酸钡中氧同位素组成的分析方法的关键技术参数:硫酸钡在线反应温度为1350℃;Ni-C与硫酸钡样品量的质量比范围选择0.73~2.15;为了获得更加精确的数据,硫酸钡与Ni-C用量都控制在700±100μg。在以上实验条件下,EA/HT-IRMS测定硫酸钡δ18O值的精密度为±0.12‰~±0.26‰,优于在线法已报道的精密度±0.20‰~±0.50‰。本方法在满足测试精密度的前提下,通过添加Ni-C降低了硫酸钡在线反应温度,延长了反应炉使用寿命。

关键词: 硫酸钡, 元素分析-稳定同位素质谱法, 氧同位素, 镀镍碳, 在线高温裂解

要点

(1)选取硫酸钡进行硫酸根的氧同位素组成分析减少了氧同位素组成的干扰。

(2)添加镀镍碳可以降低在线测试硫酸钡氧同位素组成的反应温度。

(3)EA-IRMS法分析硫酸钡氧同位素组成的准确度与本底、反应温度、镀镍碳添加比例、BaSO4样品量有关。

Determination of Oxygen Isotopic Composition in Barium Sulfate by Online Pyrolysis Method with Nickel-plated Carbon as Reductant

ABSTRACT

BACKGROUND:

The oxygen isotopic composition of sulfate radical in mineral or water can be used to identify the source and transformation process. At present, the common method is to convert sulfate radical into barium sulfate and the oxygen isotopic composition determined offline or online. It is possible to shorten the working life of the furnace when δ18O of barium sulfate is measured online under 1420℃. The reaction temperature can be reduced by adding reductant carbon, but there is less discussion about the reaction temperature reported.

OBJECTIVES:

To confirm the key technical parameters during determination of oxygen isotope composition in barium sulfate online.

METHODS:

Nickel-plated carbon was added in a series of conditional experiments during determination of oxygen isotope composition of barium sulfate by elemental analysis/isotope ratio mass spectrometry (EA-IRMS).

RESULTS:

1350℃ was chosen as the online pyrolysis temperature of barium sulfate by adding Ni-C. The sample size ratio between Ni-C and BaSO4 was set as 0.73-2.15. The sample weight of Ni-C and BaSO4 was 700±100μg, respectively. Under the above conditions, the precision of δ18O of BaSO4 measured by EA/HT-IRMS was ±0.12‰-±0.26‰, better than the reported results of ±0.20‰-±0.50‰.

CONCLUSIONS:

On the premise of better precision, the online pyrolysis temperature of barium sulfate can be reduced to 1350℃ and the lifetime of the reactor can be improved by adding Ni-C.

KEY WORDS: barium sulfate, elemental analysis-isotope ratio mass spectrometry, oxygen isotope, nickel-plated carbon, online pyrolysis method

HIGHLIGHTS

(1) Barium sulfate was selected for the oxygen isotopic composition analysis of sulfate radical in order to reduce the interference of oxygen isotope.

(2) Ni-C was added to reduce the reaction temperature during online measurement of oxygen isotope composition of barium sulfate.

(3) The accuracy of oxygen isotope composition in barium sulfate by EA-IRMS was related to background, reaction temperature, sample size ratio between Ni-C and BaSO4, and sample amount of BaSO4.

本文参考文献

[1]

李小倩, 周爱国, 刘存富, 等. 河北平原地下水硫酸盐34S和18O同位素演化特征[J]. 地球学报, 2008, 29(6): 745-751.

Li X Q, Zhou A G, Liu C F, et al. 34S and 18O isotopic evolution of residual sulfate in groundwater of the Hebei Plain[J]. Acta Geoscientica Sinica, 2008, 29(6): 745-751.

[2]

张东, 黄兴宇, 李成杰, 等. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J]. 水科学进展, 2013, 24(3): 418-426.

Zhang D, Huang X Y, Li C J, et al. Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes[J]. Advances in Water Science, 2013, 24(3): 418-426.

[3]

Antler G, Alexandra V, Rennie V, et al. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment[J].Geochimica et Cosmochimica Acta, 2013, 118: 98-117. doi: 10.1016/j.gca.2013.05.00

[4]

Temovski M, Futó I, Túri M, et al. Sulfur and oxygen isotopes in the gypsum deposits of the Provalata sulfuric acid cave (Macedonia)[J].Geomorphlogy, 2017, . doi: 10.1016/j.geomorph.2018.05.010

[5]

Sun J, Kobayashi T, Strosnider W, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J].Journal of Hydrology, 2017, . doi: 10.1016/j.jhydrol.2017.06.006

[6]

Gomes M, Johnston D. Oxygen and sulfur isotopes in sulfate in modern euxinic systems with implications for evaluating the extent of euxinia in ancient oceans[J].Geochimica et Cosmochimica Acta, 2017, . doi: 10.1016/j.gca.2017.02.020

[7]

张东, 李玉红, 张鸿禹, 等. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价[J]. 岩矿测试, 2019, 38(1): 77-84.

Zhang D, Li Y H, Zhang H Y, et al. Application of modified DDARP method for purification of barite in natural ater samples[J]. Rock and Mineral Analysis, 2019, 38(1): 77-84.

[8]

Killingsworth B, Bao H, Kohl I, et al. Assessing pyrite-derived sulfate in the Mississippi River with four years of sulfur and triple-oxygen isotope data[J].Environmental Science & Technology, 2018, . doi: 10.1021/acs.est.7b05792

[9]

万德芳, 李延河, 秦燕, 等. 碳还原法分析硫酸盐的氧同位素组成[J]. 矿床地质, 2011, 30(4): 749-753.

Wan D F, Li Y H, Qin Y, et al. Carbon reduction method for oxygen isotope composition of sulfates[J]. Mineral Deposits, 2011, 30(4): 749-753.

[10]

赵瑞, 沈延安, 谢奕汉, 等. 硫酸钡的氧硫同位素分析方法及有关数据的地质应用实例[J]. 岩石学报, 1995, 11(3): 320-324.

Zhao R, Shen Y A, Xie Y H, et al. An analytical method of oxygen and sulfur isotope compositions of BaSO4 and their practical application to geology research[J]. Acta Petrological Sinica, 1995, 11(3): 320-324.

[11]

万德芳, 李延河, 秦燕, 等. 硫酸盐的氧同位素测量方法[J]. 高校地质学报, 2006, 12(3): 378-383.

Wan D F, Li Y H, Qin Y, et al. Analytical method of oxygen isotope compositions in sulphates[J].Geological Journal of China Universities, 2006, 12(3): 378-383.

[12]

Gygli A. Microdetermination of oxygen in organic com-pounds using a glassy carbon pyrolysis tube and nondispersive infrared detection[J]. Mikrochimica Acta, 1993, 111: 37-43.

[13]

Werner R, Kornexl B, Rossmann A, et al. On-line determination of δ18O values of organic substances[J].Analytical Chimca Acta, 1996, 319: 159-164.

[14]

Koziet J. Isotope ratio mass spectrometric method for the on-line determination of oxygen-18 in organic matter[J]. Mass Spectrometry, 1997, 32(1): 103-108.

[15]

方玲, 周爱国, 李小倩, 等. 高温裂解在线测试高氯酸盐氧同位素方法研究[J]. 地质学报, 2015, 89(10): 1832-1840.

Fang L, Zhou A G, Li X Q, et al. High temperature convertion online measurement of oxygen isotopic composition of perchlorate[J]. Acta Geological Sinica, 2015, 89(10): 1832-1840.

[16]

Kornexl B, Gehre M, Höfling R, et al. On-line δ18O measurements of organic and inorganic substances[J].Rapid Communications in Mass Spectrometry, 1999, 13(16): 1685-1693.

[17]

Michalski G, Kasem M, Jason A, et al. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate[J]. Rapid Communications in Mass Spectrometry, 2008, 22: 2971-2976.

[18]

Sharp Z, Atudorei V, Durakiewicz T, et al. A rapid method for the determination of hydrogen and oxygen isotope ratios of water from water and solid hydrous substances[J].Chemical Geology, 2001, 178(1-4): 197-210.

[19]

Böhlke J, Mroczkowski S, Coplen T, et al. Oxygen isotopes in nitrate:New reference materials for 18O:17O:16O measurements and observations on nitrate water equilibration[J]. Rapid Communications in Mass Spectrometry, 2003, 17(16): 1835-1846.

[20]

Morrison J.A New High Temperature EA-Pyrolysis-IRMS Solution to δ18O Analysis of Inorganic Samples[R].Micromass: Application Brief, 1999.

[21]

徐文, 刘存富, 甘义群, 等. 地下水硝酸盐15N和18O同位素在线测试技术研究[J]. 岩矿测试, 2013, 32(2): 453-467.

Xu W, Liu C F, Gan Y Q, et al. Online measurement technique on 15N and 18O isotopes of nitrate in groundwater[J]. Rock and Mineral Analysis, 2013, 32(2): 453-467.

[22]

Fourel F, Martineau F, Lécuyer C, et al. 18O/16O ratio measurements of inorganic and organic materials by elemental analysis pyrolysis isotope ratio mass spectrometry continuous flow techniques[J]. Rapid Communications in Mass Spectrometry, 2011, 25: 2691-2696.

[23]

查向平, 龚冰, 郑永飞, 等. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定[J]. 岩矿测试, 2017, 36(4): 327-339.

Zha X P, Gong B, Zheng Y F, et al. Silicate rocks by a high sensitivity elemental analyzer coupled with a continuous flow isotope mass spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339.

[24]

韩娟, 刘汉彬, 金贵善, 等. 样品质量对EA-IRMS法测量硫同位素组成的影响[J]. 铀矿地质, 2018, 34(3): 166-173.

Han J, Liu H B, Jin G S, et al. Sample mass influence on the measurement of sulfur isotopic composition by EA-IRMS method[J]. Uranium Geology, 2018, 34(3): 166-173.

[25]

查向平, 龚冰, 郑永飞, 等. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467.

Zha X P, Gong B, Zheng Y F, et al. Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467.

[26]

Geilmann H, Richter J M, Rothe M, et al.Standardization of δ18O Measurements Using on-line High-temperature Carbon Reduction: A New Series of Standard Reference Materials (SRMs)[C]//Proceedings of GASIR 29.2006.

[27]

Halas S, Szaran J, Czarnacki M, et al. Refinements in BaSO4 to CO2 preparation and δ18O calibration of the sulfate reference materials NBS-127, IAEA-SO-5 and IAEA-SO-6[J].Geostandards and Geoanalytical Research, 2007, 31(1): 61-68.

[28]

金贵善, 刘汉彬, 张建锋, 等. 硫化物中硫同位素组成的EA-IRMS分析方法[J]. 铀矿地质, 2014, 30(3): 187-192.

Jin G S, Liu H B, Zhang J F, et al. EA-IRMS system measurement of stable sulfur isotope in sulphide[J].Uranium Geology, 2014, 30(3): 187-192.

相似文献(共20条)

[1]

杜广鹏, 王旭, 张福松. GasBench Ⅱ顶空瓶内空气背景对<100 μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探. 岩矿测试, 2010, 29(6): 631-638.

[2]

杨会, 唐伟, 吴夏, 王华, 应启和, 涂林玲. Kiel Ⅳ-IRMS双路在线分析微量碳酸盐的碳氧同位素. 岩矿测试, 2014, 33(4): 480-485.

[3]

朱园园, 邱海鸥, 杜永, 汤志勇, 帅琴, 宋虎跃. 应用GasBench Ⅱ-IRMS优化碳氧同位素分析方法. 岩矿测试, 2014, 33(6): 789-794.

[4]

李铁军. 氧同位素在岩石成因研究的新进展. 岩矿测试, 2013, 32(6): 841-849.

[5]

张建锋, 刘汉彬, 石晓, 金贵善, 李军杰, 张佳, 韩娟, 郭东侨, 钟芳文. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062

[6]

蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049

[7]

张琳, 陈宗宇, 刘福亮, 贾艳琨, 张向阳, 陈立. 水中氢氧同位素不同分析方法的对比. 岩矿测试, 2011, 30(2): 160-163.

[8]

赵学沛, 何雪梅, 沙艳梅, 王明军. 硅钙钡镁合金中钡钙镁的测定. 岩矿测试, 2004, (4): 308-310.

[9]

张东, 李玉红, 张鸿禹, 郝伟博, 晏文荣, 杨伟, 贾保军. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价. 岩矿测试, 2019, 38(1): 77-84. doi: 10.15898/j.cnki.11-2131/td.201804100040

[10]

郑礼胜, 石保莉. 乳化剂OP存在下硫酸钡浊度法测定天然水中硫酸根. 岩矿测试, 1993, (1): 77-77.

[11]

陈景伟, 宋江涛, 陈朝阳. X射线荧光光谱法测定重晶石中的硫酸钡方法研究. 岩矿测试, 2017, 36(4): 382-387. doi: 10.15898/j.cnki.11-2131/td.201608040115

[12]

范福南, 范秀娥, 邢富. 高热硫酸溶解重量法测定矿石中的钡. 岩矿测试, 2002, (3): 219-222.

[13]

陈利平, 杨德君. 等离子体发射光谱法测定重晶石中钡铁和硅. 岩矿测试, 1998, (4): 317-318.

[14]

郝新丽, 韩思航, 杨磊, 戴忆竹, 黄璐瑶, 王竞铮. 基于高温燃烧裂解-气体同位素质谱法研究水样中有机物对氢稳定同位素比值的影响. 岩矿测试, 2019, 38(5): 504-510. doi: 10.15898/j.cnki.11-2131/td.201811150121

[15]

白瑞梅, 李金城. 热解硫酸钡制备硫同位素分析试样二氧化硫. 岩矿测试, 1998, (1): 40-43.

[16]

卢彦, 冯勇, 李刚, 刘卫. 酸溶-电感耦合等离子发射光谱法测定密西西比型铅锌矿床矿石中的铅. 岩矿测试, 2015, 34(4): 442-447. doi: 10.15898/j.cnki.11-2131/td.2015.04.011

[17]

汪志芬, 陈成业, 黄福生, 穆治国. 个旧锡矿花岗岩的氧氢碳稳定同位素研究. 岩矿测试, 1983, (4): 241-247.

[18]

李立武, 王广, 李中平, 杜丽, 曹春辉. 稳定同位素质谱与同位素光谱结合的方法分析氧同位素17O/16O. 岩矿测试, 2013, 32(3): 392-397.

[19]

查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

[20]

王宁, 朱庆增, 谢曼曼, 宋智甲, 王道聪, 贾秋唤, 岑况, 储国强, 孙青. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素. 岩矿测试, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016

计量
  • PDF下载量(35)
  • 文章访问量(253)
  • HTML全文浏览量(21)
  • 被引次数(0)
目录

Figures And Tables

镀镍碳为还原剂在线高温裂解法测定硫酸钡中氧同位素组成

金贵善, 刘汉彬, 韩娟, 李军杰, 张建锋, 张佳, 石晓