

多仪器协同-X射线荧光光谱法在区域地球化学调查分析中的应用评价
河北省地矿中心实验室, 河北 保定 071051 |
Evaluation in the Application of Multi-instrument Synergy X-ray Fluorescence Spectrometry in a Regional Geochemical Survey
Hebei Province Geological and Mineral Center Laboratory, Baoding 071051, China |
摘要:在区域地球化学调查样品多元素分析测试中,通常将XRF、ICP-OES、ICP-MS、AFS等仪器相互配套使用,但由于XRF测定20多个元素,与其他仪器测定速度并不同步,影响了项目的整体进度。本方法对配套方案进行了优化,调整了XRF部分测量元素的分析方法,即将基体校正和谱线重叠校正涉及Na2O、MgO、V的数据由ICP-OES法测量;Cu、Pb、Zn、Mn、Th的数据由ICP-MS法测量;As、Bi的数据由AFS法测量。优化后的XRF方法测量元素减少为16个:SiO2、Al2O3、CaO、TFe2O3、K2O、Ti、P、Sr、Ba、Zr、Nb、Y、Rb、Br、Ga、Cl。通过设计的XRF数据处理程序,实现了这些不同方法的测量数据共享,利用ICP-OES、ICP-MS、AFS等测量数据对XRF数据进行基体效应和谱线重叠干扰校正。本方法精密度(RSD,n=12)为0.55%~8.22%,准确度(△logC)为0.000~0.031,用国家标准物质及实际样品验证的结果满足区域地球化学调查样品分析测试质量规范要求。本方案减少了XRF直接测量元素的数量,提高了多种仪器协同的分析效率。
Evaluation in the Application of Multi-instrument Synergy X-ray Fluorescence Spectrometry in a Regional Geochemical Survey
ABSTRACT Multi-element analysis of a regional geochemical survey sample usually involves X-ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Atomic Fluorescence Spectrometry (AFS) and other instruments. Because there are more than 20 elements determined by XRF, the detection speed of XRF is not synchronous with other instruments, which influences the overall progress of the project. The matching scheme is optimized, and the analysis method of XRF for part of the elements is adjusted in this study. The data of Na2O, MgO and V involved in matrix correction and spectral overlap correction are measured by ICP-OES. The data of Cu, Pb, Zn, Mn, and Th were measured by ICP-MS. As and Bi data were measured by AFS. The optimized XRF method reduces the number of elements to 16, namely SiO2, Al2O3, CaO, Fe2O3, K2O, Ti, P, Sr, Ba, Zr, Nb, Y, Rb, Br, Ga and Cl. Through the designed XRF data reduction program, the data sharing of different analysis methods is realized, and the influence of XRF data caused by matrix effects and spectral line overlap is corrected using the data from XRF, ICP-OES, ICP-MS and AFS. The precision of this method (RSD, n=12) is 0.55%-8.22%, and the accuracies (△logC) are 0-.0.031. The method is validated by determination of national standard reference materials and actual samples. The results meet the quality requirements for a regional geochemical survey. This scheme reduces the number of elements directly measured by XRF, and improves the analysis efficiency of various collaborative instruments.

本文参考文献
[1] |
周国华. 多目标区域地球化学调查:分析测试面临的机遇和挑战[J]. 岩矿测试, 2010, 29(3): 296-300. Zhou G H. Multi-purpose regional geochemical survey:Opportunities and challenges for geochemical analysis[J]. Rock and Mineral Analysis, 2010, 29(3): 296-300. |
[2] |
叶家瑜, 张蕾. 多目标地球化学勘查样品分析方法配套方案[J]. 地质通报, 2006, 25(6): 741-744. Ye J Y, Zhang L. Combination schemes of sample analysis methods for multitarget geochemical survey[J]. Geological Bulletin of China, 2006, 25(6): 741-744. |
[3] |
张勤. 多目标区域地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3): 292-297. Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determ in nations of 54 components in multipurpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3): 292-297. |
[4] |
岩石矿物分析编委会. 岩石矿物分析(第四版第四分册)[M] . 北京: 地质出版社, 2011: 791-865. The Editorial Committee of Rocks and Minerals Analysis . Rocks and Minerals Analysis (The Fourth Edition:Part Ⅳ)[M] . Beijing: Geological Publishing House, 2011: 791-865. |
[5] |
罗立强,詹秀春,李国会. X射线荧光光谱分析[M] . 北京: 化学工业出版社, 2015 Luo L Q,Zhan X C,Li G H. X-ray Fluorescence Spectro-metry[M] . Beijing: Chemical Industry Press, 2015 |
[6] |
于波, 严志远, 杨乐山, 等. X射线荧光光谱法测定土壤和水系沉积物中碳和氮等36个主次痕量元素[J]. 岩矿测试, 2006, 25(1): 74-78. Yu B, Yan Z Y, Yang L S, et al. Determination of 36 major, minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2006, 25(1): 74-78. |
[7] |
苏梦晓, 陆安军. 电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较[J]. 冶金分析, 2015, 35(5): 48-53. Su M X, Lu A J. Comparison of inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry and spectrographic method for the determination of copper, lead, zinc and nickel in geochemical samples[J]. Metallurgical Analysis, 2015, 35(5): 48-53. |
[8] |
刘珠丽, 李洁, 杨永强, 等. 微波消解-ICP-AES-ICP-MS测定沉积物中23种元素的方法研究及应用[J]. 环境化学, 2013, 32(12): 2371-2377. Liu Z L, Li J, Yang Y Q, et al. Research and application of microwave assisted digestion procedure for the determination of 23 elements in sediments by ICP-AES/ICP-MS[J]. Environmental Chemistry, 2013, 32(12): 2371-2377. |
[9] |
Criss J W, Birks L S. Calculation methods for fluorescent X-ray spectrometry empirical coeffcients vs.fundamental parameters[J].Analytical Chemistry, 1968, 40(7): 1080-1086. doi: 10.1021/ac60263a023 |
[10] |
Klimasara A J. Mathematical modeling of XRF matrix correction algorithms with an electronic spreadsheet[J]. Advances in X-ray Analysis, 1994, 37: 647-656. |
[11] |
Lee R F, McConchie D R. Comprehensive major and trace elements analysis of geological material by X-ray fluorescence using low dilution fusion[J].X-Ray Spectrometry, 1982, 11(2): 55-63. doi: 10.1002/(ISSN)1097-4539 |
[12] |
Younis A, Ahmadi Z, Adams M G, et al. A simple method for quantitative analysis of elements by WD-XRF using variable dilution factors in fusion bead technique for geologic specimens[J].X-Ray Spectrometry, 2017, 46(1): 69-76. doi: 10.1002/xrs.v46.1 |
[13] |
包生祥. X射线荧光光谱分析检出限计算公式[J]. 光谱学与光谱分析, 1992, 12(4): 93-96. Bao S X. Calculation formula for detection limit of X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 1992, 12(4): 93-96. |
[14] |
陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91-98. Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. |
相似文献(共20条)
[1] |
余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150. |
[2] |
李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231. |
[3] |
徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76. |
[4] |
王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236. |
[5] |
王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234. |
[6] |
王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40. |
[7] |
钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73. |
[8] |
王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78. |
[9] |
刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44. |
[10] |
周伟, 曾梦, 王健, 张磊, 李迎春. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113 |
[11] |
梁国立, 强小平, 邓赛文, 王有增, 方明渭, 田寅贞. X射线荧光光谱快速分析铝土矿的方法研究. 岩矿测试, 2001, (4): 305-308. |
[12] |
梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008 |
[13] |
陈静, 高志军, 陈冲科, 刘延霞, 张明炜. X射线荧光光谱法分析地质样品的应用技巧. 岩矿测试, 2015, 34(1): 91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012 |
[14] |
刘玉纯, 林庆文, 马玲, 梁述廷. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化. 岩矿测试, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014 |
[15] |
李国会, 徐国令, 李晓莉. X射线荧光光谱法在耐火材料成分分析中的应用. 岩矿测试, 2003, (3): 217-220224. |
[16] |
曾江萍, 吴磊, 李小莉, 王娜, 张莉娟. 较低稀释比熔融制样X射线荧光光谱法分析铬铁矿. 岩矿测试, 2013, 32(6): 915-919. |
[17] |
谭秉和, 孙伟莹. X射线荧光光谱法对钒氧化物中不同价态钒的定量分析. 岩矿测试, 2000, (4): 245-248. |
[18] |
张孟群, 刘笛, 张维睿, 邬黛黛, 韩杰, 叶瑛. 普通X射线荧光光谱法用于中太平洋富钴结壳中锰价态的定量分析. 岩矿测试, 2007, 26(2): 97-100. |
[19] |
王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证. 岩矿测试, 2016, 35(2): 145-151. doi: 10.15898/j.cnki.11-2131/td.2016.02.006 |
[20] |
李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034 |
计量
- PDF下载量(54)
- 文章访问量(3970)
- HTML全文浏览量(1634)
- 被引次数(0)