

内标校正-电感耦合等离子体发射光谱法测定磷矿石中的磷
湖北省地质实验测试中心, 湖北 武汉 430034 |
Determination of Phosphorus in Phosphate Ores by Inductively Coupled Plasma-Optical Emission Spectrometry Utilizing an Internal Standard Correction Method
Hubei Province Geological Experimental Testing Center, Wuhan 430034, China |
摘要:采用电感耦合等离子体发射光谱法(ICP-OES)可以同时测定磷矿石中的主、次量元素,但在实际测量过程中,仪器的漂移以及基体效应引起的分析误差不容忽视。本文以碲为内标,对高含量磷的测定进行校正,可以有效降低由仪器漂移以及基体效应引起的分析误差,12次平行测定磷的相对标准偏差(RSD)为0.5%,与未经校正的RSD值(4.1%)相比,显著提高了分析精度,极大地降低了仪器波动对测定结果的影响,因此获得了更低的方法检出限(0.0044%)。实验还对比了王水溶样与盐酸-硝酸-氢氟酸-高氯酸(四酸)溶样两种样品前处理方法对磷矿石分析的影响,结果表明:以王水对磷矿石标准物质进行快速溶解,磷、钙、铁、镁、锰等元素的测定结果与标准值间的相对误差范围为-6.7%~1.6%,满足日常测定要求;而钾、钠、铝是否能够完全溶出与样品的矿物组成及氟含量存在联系,若需要分析钾、钠、铝等元素,如果样品中的硅酸盐矿物组成不多,氟含量较高时可以考虑采用王水溶解;四酸可以完全溶解样品,适合于磷、钙、铁、镁、铝、钾、钠、锰、锶等元素的同时测定。
Determination of Phosphorus in Phosphate Ores by Inductively Coupled Plasma-Optical Emission Spectrometry Utilizing an Internal Standard Correction Method
ABSTRACT Inductively Coupled Plasma-Optical Emission Spectrometry has been widely used to determine major and minor components in phosphate ores. However, the analysis error caused by instrument drift and matrix effect cannot ignored. In this study, tellurium was used as the internal standard element in order to reduce the instrument drift and matrix effect during determination of high phosphorous content. The relative standard deviation for 12 repeated analyses is 0.5%, which is better than that without calibration (4.1%). The lower detection limit (0.0044%) was achieved by internal standard correction for phosphorus determination. Two kinds of acid digestion methods, aqua regia and a mixture of HCl, HNO3, HF and HClO4, for phosphate ore were compared in this work. The results indicate that rapid digestion by aqua regia was suitable for some elements such as phosphorus, calcium, iron, magnesium, manganese analysis, with relative error ranging from-6.7% to 1.6%. The complete digestion of K, Na, Al is related to mineral components and F content of samples. If K, Na, and Al are needed to analyze and there are only a few silicate minerals but a lot of F-bearing components, aqua regia can be used. A mixture of HCl, HNO3, HF and HClO4 can completely digest samples and is suitable for determination of P, Ca, Fe, Mg, Al, K, Na, Mn and Sr.

本文参考文献
[1] |
鄢正华. 我国磷矿资源开发利用综述[J]. 矿冶, 2011, 20(3): 21-25. Yan Z H. Review of development and utilization of phosphate resources in China[J]. Mining and Metallurgy, 2011, 20(3): 21-25. |
[2] |
严炜. 湖北省磷矿资源产业发展战略研究[D]. 武汉: 中国地质大学, 2014. Yan W.Development Strategy for Hubei's Phosphorous Industry[D].Wuhan:China University of Geosciences, 2014. |
[3] |
杨小刚, 杜昕, 姚亮, 等. ICP-AES技术应用的研究进展[J]. 现代科学仪器, 2012, (3): 139-144. Yang X G, Du X, Yao L, et al. Progresses of application and research for ICP-AES technology[J]. Modern Scientific Instruments, 2012, (3): 139-144. |
[4] |
邢夏, 徐进力, 刘彬, 等. 电感耦合等离子体发射光谱法在地质样品分析中的应用进展[J]. 物探与化探, 2016, 40(5): 998-1006. Xing X, Xu J L, Liu B, et al. The application of inductively coupled plasma-atomic emission spectrometry (ICP-AES) to the analysis of geological samples[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 998-1006. |
[5] |
Rietig A, Acker J. Development and validation of a new method for the precise and accurate determination of trace elements in silicon by ICP-OES in high silicon matrices[J].Journal of Analytical Atomic Spectrometry, 2017, 32: 322-333. doi: 10.1039/C6JA00241B |
[6] |
郑永凤, 王玉清. 磷灰石中12个元素的ICP发射光谱测定法[J]. 铀矿地质, 1986, (1): 50-54. Zheng Y F, Wang Y Q. Inductively coupled plasma atomic spectrometric determination 12 elements of apatite[J]. Uranium Geology, 1986, (1): 50-54. |
[7] |
冯晓军, 罗廉明, 陈晶亮, 等. 电感耦合等离子体发射光谱法快速测定磷矿石中主次量组分[J]. 岩矿测试, 2009, 28(4): 399-400. Feng X J, Luo L M, Chen J L, et al. Determination of major and minor components in phosphate ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2009, 28(4): 399-400. |
[8] |
郭振华. 电感耦合等离子体发射光谱法测定磷矿石中常量元素硅磷硫钙镁铝铁钛锰[J]. 岩矿测试, 2012, 31(3): 446-449. Guo Z H. Determination of major components in phosphate ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 446-449. |
[9] |
李东, 赵军. ICP-AES法测定磷矿石中主量、痕量成分[J]. 光谱学与光谱分析, 2001, 21(2): 233-234. Li D, Zhao J. Study on the analysis of main and trace elements in phosphate rock by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2001, 21(2): 233-234. |
[10] |
吴迎春, 岳宇超, 聂峰, 等. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁[J]. 岩矿测试, 2014, 33(4): 497-500. Wu Y C, Yue Y C, Nie F, et al. Determination of P, Mg, Al and Fe in phosphate ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 497-500. |
[11] |
罗晓光, 郭懋娴, 朱旦兮, 等. 电感耦合等离子体发射光谱法同时测定磷矿和磷肥样品中高含量磷及其他常量元素[J]. 分析化学, 1992, 20(7): 866. Luo X G, Guo M X, Zhu D X, et al. Simultaneous determination of high content phosphorus and other constant elements in phosphate and phosphate fertilizer samples by inductively coupled plasma-optical emission spectrometry[J]. Journal of Chinese Analytical Chemistry, 1992, 20(7): 866. |
[12] |
汪正, 陈天裕, 张蓓红, 等. 端室ICP-AES中用铟内标校正钠基体干扰的研究[J]. 分析试验室, 2004, 23(3): 37-39. Wang Z, Chen T Y, Zhang B H, et al. Study on internal standard compensation for interference of sodium matrix in axial viewing ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2004, 23(3): 37-39. |
[13] |
蔡祖成, 韩金凤, 张军, 等. 电感耦合等离子体原子发射光谱法测定硅灰石中钙镁铝铁锰[J]. 冶金分析, 2013, 33(7): 45-50. Cai Z C, Han J F, Zhang J, et al. Determination of calcium, magnesium, aluminium, iron and manganese in wollastonite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2013, 33(7): 45-50. |
[14] |
唐华应, 方艳, 薛秀萍, 等. 电感耦合等离子体发射光谱法测定锰铁合金中铬硅磷[J]. 冶金分析, 2007, 27(9): 48-50. Tang H Y, Fang Y, Xue X P, et al. Determination of chromium, silicon, phosphorus in ferromanganese alloy by inductively coupled plasma-atomic emission spectrometry[J]. Metallurgical Analysis, 2007, 27(9): 48-50. |
[15] |
成勇. 电感耦合等离子体原子发射光谱法测定钒铝合金中微量硅锰磷铁[J]. 理化检验 (化学分册), 2010, 46(7): 781-783. Cheng Y. ICP-AES determination of trace amount of Si, Mn, P and Fe in vanadium-aluminum alloy[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(7): 781-783. |
[16] |
王杰明, 杨德凤, 吴梅, 等. ICP-OES测定生物油脂中的磷含量[J]. 石油炼制与化工, 2014, 45(7): 97-101. Wang J M, Yang D F, Wu M, et al. Determination of phosphorus content in biological oil by ICP-OES[J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 97-101. |
相似文献(共19条)
[1] |
李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231. |
[2] |
邓天龙, 吴怡, 徐青, 廖梦霞. 水环境中氮磷形态分析方法研究进展. 岩矿测试, 2008, 27(2): 137-141. |
[3] |
吴迎春, 岳宇超, 聂峰. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁. 岩矿测试, 2014, 33(4): 497-500. |
[4] |
郭振华. 电感耦合等离子体发射光谱法测定磷矿石中常量元素硅磷硫钙镁铝铁钛锰. 岩矿测试, 2012, 31(3): 446-449. |
[5] |
张超, 李享. 电感耦合等离子体发射光谱法测定镍矿石中镍铝磷镁钙. 岩矿测试, 2011, 30(4): 473-476. |
[6] |
杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148. |
[7] |
魏轶, 窦向丽, 巨力佩, 张旺强, 赵伟华, 余志峰, 毛振才. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑. 岩矿测试, 2013, 32(5): 715-718. |
[8] |
郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28. |
[9] |
吴石头, 王亚平, 孙德忠, 温宏利, 许春雪, 王伟. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素————四种前处理方法的比较. 岩矿测试, 2014, 33(1): 12-19. |
[10] |
王祝, 邵蓓, 柳诚, 冯源强, 刘高令, 邬国栋, 李明礼. 电感耦合等离子体发射光谱法测定西藏矽卡岩型铜多金属富矿石中8种成矿元素. 岩矿测试, 2018, 37(2): 146-151. doi: 10.15898/j.cnki.11-2131/td.201712010188 |
[11] |
文加波, 商丹, 宋婉虹, 彭国萍. 电感耦合等离子体发射光谱法测定铝土矿中镓——酸溶和碱熔预处理方法比较. 岩矿测试, 2011, 30(4): 481-485. |
[12] |
王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217. |
[13] |
刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896. |
[14] |
陈广志, 苏明跃, 王昊云. 微波消解-电感耦合等离子体发射光谱法测定煤中磷. 岩矿测试, 2011, 30(4): 477-480. |
[15] |
王卿, 赵伟, 张会堂, 周长祥, 回寒星. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中铬磷钒. 岩矿测试, 2012, 31(6): 971-974. |
[16] |
胡德新, 肖葵, 王向东, 王振坤, 刘敏, 李权斌. 微波消解-电感耦合等离子体发射光谱法测定高碳铬铁中硅锰磷. 岩矿测试, 2014, 33(2): 208-211. |
[17] | |
[18] |
秦晓丽, 田贵, 李朝长, 蒋智林. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾. 岩矿测试, 2019, 38(6): 741-746. doi: 10.15898/j.cnki.11-2131/td.201812290142 |
[19] |
吴峥, 张飞鸽, 张艳. 电感耦合等离子体发射光谱法测定石煤中的13种元素. 岩矿测试, 2013, 32(6): 978-981. |
计量
- PDF下载量(44)
- 文章访问量(2570)
- HTML全文浏览量(1027)
- 被引次数(0)