【引用本文】 杨清, . 过硫酸钠修复土壤中多环芳烃的准确测定[J]. 岩矿测试, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148
YANG Qing. Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate[J]. Rock and Mineral Analysis, 2022, 41(3): 404-411. doi: 10.15898/j.cnki.11-2131/td.202110130148

过硫酸钠修复土壤中多环芳烃的准确测定

上海市地矿工程勘察(集团)有限公司,上海市岩土工程检测中心有限公司,上海 201900

收稿日期: 2021-10-13  修回日期: 2021-11-29  接受日期: 2022-01-28

基金项目: 上海市地矿工程院科研基金资助项目(Gky202004)

作者简介: 杨清,硕士,工程师,主要从事环境样品检测与土壤修复项目评估工作。E-mail: zhangkai5938@126.com

Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate

Shanghai Geotechnical Engineering Detecting Center Co., Ltd; Shanghai Geological Engineering Exploration (Group) Co., Ltd, Shanghai 201900, China

Received Date: 2021-10-13
Revised Date: 2021-11-29
Accepted Date: 2022-01-28

摘要:多环芳烃(PAHs)是一类具有致癌、致突变、致畸的碳氢化合物,具有较高的辛醇-水分配系数,易被土壤颗粒吸附而影响环境和人体健康。过硫酸钠(Na2S2O8)氧化法是近些年来国内外修复PAHs污染土壤较为常用的方法,但现阶段在测定修复后土壤中PAHs含量、进行土壤修复效果评估时亟待解决的问题是:经该方法修复的土壤,若土壤中残留有过硫酸钠,在样品前处理过程中由于提取温度较高,可能会进一步加速多环芳烃的氧化反应,从而影响土壤中PAHs的准确测定。本文建立了一种在修复后土壤中加入还原剂抗坏血酸,与残留的过硫酸钠反应生成脱氢抗坏血酸,采用索氏提取结合气相色谱-质谱法(GC-MS)同时测定土壤中16种PAHs的方法,PAHs加标回收率为76.2%~110.0%。而修复后土壤若不加还原剂直接进行索氏提取,用GC-MS测定,可能会使部分PAHs及替代物的测定不准确,PAHs加标回收率仅为6.0%~72.4%。通过对比分析表明,在样品提取前加入还原剂,可以有效地消除残留过硫酸钠的影响,提高测定修复后土壤中PAHs含量的准确性。

关键词: 多环芳烃, 过硫酸钠, 污染土壤, 化学氧化法修复, 抗坏血酸, 索氏提取, 气相色谱-质谱法

要点

(1) 残留过硫酸钠氧化剂在样品前处理过程中,可能进一步氧化多环芳烃。

(2) 残留过硫酸钠对苊烯、苯并(a)芘、2-氟酚、2, 4, 6-三溴苯酚的测定影响显著。

(3) 抗坏血酸可有效地还原修复后土壤中残留的过硫酸钠。

Accurate Determination of Polycyclic Aromatic Hydrocarbons in Soil Remedied with Sodium Persulfate

ABSTRACT

BACKGROUND:

Polycyclic aromatic hydrocarbons (PAHs) are a series of carcinogenic, mutagenic and teratogenic hydrocarbons with high octanol-water partition coefficients, which are easily adsorbed by soil particles and affect the environment and human health. Sodium persulfate (Na2S2O8) oxidation method to remediate PAHs in organic contaminated soil is a more commonly used method in recent years both domestically and internationally. However, at the present stage, the urgent problem to be solved in measuring the content of PAHs in the remediation soil and evaluating the effect of soil remediation is that if sodium persulfate remains in the soil, the oxidation reaction of PAHs may be further accelerated due to the high extraction temperature in the sample pretreatment process.

OBJECTIVES:

To develop an accurate method to determine PAHs in soil after remediation.

METHODS:

The effects of no reductant and pre-added reductant-Soxhlet extraction on the recoveries of 16 polycyclic aromatic hydrocarbons and 6 substitutes in soil after remediation were investigated using gas chromatography-mass spectrometry (GC-MS).

RESULTS:

The results showed that the method of pre-added reductant (Vitamin C) was better than no reductant. The PAHs recoveries of pre-added reductant and no reductant were 76.2%-110.0% and 6.0%-72.4%, respectively.

CONCLUSIONS:

The comparative analysis showed that adding reducing agent before sample extraction could effectively eliminate the influence of residual sodium persulfate and improve the accuracy of PAHs determination results in soil after remediation. This study provides a new method for the accurate determination of PAHs in soil after remediation.

KEY WORDS: polycyclic aromatic hydrocarbons, sodium persulfate, contaminated soil, chemical oxidation remediation, Vitamin C, Soxhlet extraction, gas chromatography-mass spectrometry

HIGHLIGHTS

(1) Residual sodium persulfate oxidant may further oxidize polycyclic aromatic hydrocarbons (PAHs) during sample preparation.

(2) Residual sodium persulfate has significant influence on the determination of acenaphthylene, benzo(a)pyrene, 2-fluorophenol and 2, 4, 6-tribromophenol.

(3) Vitamin C can effectively reduce the residual sodium persulfate in soil after remediation.

本文参考文献

[1]

孙书堂, 严倩, 黎宁, 等. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究[J]. 岩矿测试, 2020, 39(3): 408-416.

Sun S T, Yan Q, Li N, et al. In situ self-transforming membrane as solid phase microextraction coating extraction of PAHs in environmental water samples[J]. Rock and Mineral Analysis, 2020, 39(3): 408-416.

[2]

Yang J, Qadeer A, Liu M, et al. Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J].Applied Geochemistry, 2019, 106: 17-25. doi: 10.1016/j.apgeochem.2019.04.023

[3]

李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586.

Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586.

[4]

邹杰明, 冯慧, 邹华, 等. 零价铁修复多环芳烃污染土壤的研究[J]. 环境科学与技术, 2021, 44(S1): 95-100.

Zou J M, Feng H, Zou H, et al. Remediation of polycyclic aromatic hydrocarbons contaminated soil with zero valent iron[J]. Environmental Science & Technology, 2021, 44(S1): 95-100.

[5]

李丽, 张兴, 王亚军, 等. 过硫酸钠对黄土高原石油类污染土壤的处理[J]. 环境科学与技术, 2020, 43(12): 159-165.

Li L, Zhang X, Wang Y J, et al. Treatment of petroleum hydrocarbons in loess by sodium persulfate[J]. Environmental Science & Technology, 2020, 43(12): 159-165.

[6]

周佳靖, 柳修楚, 郭瑾, 等. 纳米氧化铁与氧化剂对多环芳烃污染农田土壤修复和蔬菜健康风险的影响[J]. 环境污染与防治, 2021, 43(2): 223-228.

Zhou J J, Liu X C, Guo J, et al. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland[J]. Environmental Pollution & Control, 2021, 43(2): 223-228.

[7]

Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J].Ultrasonics Sonochemistry, 2016, 29: 156-162. doi: 10.1016/j.ultsonch.2015.09.008

[8]

吴丽颖, 王炳煌, 张圆春, 等. 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(6): 2318-2324.

Wu L Y, Wang B H, Zhang Y C, et al. Degradation of reactive black 5 (RBK5) by gelatin balls loading iron activating sodium persulfate[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2318-2324.

[9]

Liu Y, Lang J, Wang T, et al. Enhanced degradation of isoproturon in soil through persulfate activation by Fe-based layered double hydroxide: Different reactive species comparing with activation by homogenous Fe(Ⅱ)[J].Environmental Science and Pollution Research, 2018, 25(26): 26394-26404. doi: 10.1007/s11356-018-2637-3

[10]

潘栋宇, 侯梅芳, 刘超男, 等. 多环芳烃污染土壤化学修复技术的研究进展[J]. 安全与环境工程, 2018, 25(3): 54-60.

Pan D Y, Hou M F, Liu C N, et al. Review of chemical remediation technology of polycyclic aromatic hydrocarbons contaminated soil[J]. Safety and Environmental Engineering, 2018, 25(3): 54-60.

[11]

侯思颖, 邓一荣, 陆海建, 等. 铁活化过硫酸盐原位修复有机污染土壤研究进展[J]. 环境工程, 2021, 39(4): 194-200.

Hou S Y, Deng Y R, Lu H J, et al. Research progress on iron activated persulfate in situ remediation of organic contaminated soil[J]. Environmental Engineer, 2021, 39(4): 194-200.

[12]

周婵媛, 蒙眺, 杨春艳, 等. 管内填充磁性碳纳米管固相萃取-气相色谱/质谱法测定环境样品中多环芳烃[J]. 分析试验室, 2021, 40(9): 1015-1020.

Zhou C Y, Meng Z, Yang C Y, et al. Solid-phase extraction based in tube filled-magnetic carbon nanotubes coupled with GC-MS for analysis of polycyclic aromatic hydrocarbons in environmental samples[J]. Chinese Journal of Analysis Laboratory, 2021, 40(9): 1015-1020.

[13]

谭华东, 张汇杰, 武春媛, 等. GC-MS结合微量QuEChERS法快速测定土壤中16种多环芳烃[J]. 中国测试, 2020, 46(1): 64-70.

Tan H D, Zhang H J, Wu C Y, et al. Rapid determination of 16 polycyclic aromatic hydrocarbons in soil by gas chromatography-tandem mass spectrometry coupled with micro-QuEChERS[J]. China Measurement & Test, 2020, 46(1): 64-70.

[14]

王翔, 赵南京, 俞志敏, 等. 土壤有机污染物激光诱导荧光光谱检测方法研究进展[J]. 光谱学与光谱分析, 2018, 38(3): 857-863.

Wang X, Zhao N J, Yu Z M, et al. Detection method progress and development trend of organic pollutants in soil using laser-induced fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 857-863.

[15]

温海滨, 胡玉玲, 李攻科, 等. 磁性微孔聚合物富集/表面增强拉曼光谱法测定水与土壤中多环芳烃[J]. 分析测试学报, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008

Wen H B, Hu Y L, Li G K, et al. Determination of polycyclic aromatic hydrocarbons in environmental water and soil samples by magnetic microporous polymer enrichment coupled with surface-enhanced Raman spectroscopy[J].Journal of Instrumental Analysis, 2017, 36(10): 1214-1218. doi: 10.3969/j.issn.1004-4957.2017.10.008

[16]

Yen C H, Chen K F, Kao C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J].Journal of Hazardous Materials, 2011, 186: 2097-2102. doi: 10.1016/j.jhazmat.2010.12.129

[17]

Do S H, Kwon Y J, Kong S H, et al. Effect of metal oxides on the reactivity of persulfate/Fe(Ⅱ) in the remediation of diesel-contaminated soil and sand[J].Journal of Hazardous Materials, 2010, 182: 933-936. doi: 10.1016/j.jhazmat.2010.06.068

[18]

Ge D, Dong Y, Zhang W, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J].Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146

[19]

Liu J, Yang Q, Wang D, et al. Enhanced dewaterability of waste activated sludge by Fe(Ⅱ)-activated peroxymonosulfate oxidation[J].Bioresource Technology, 2016, 206: 134-140. doi: 10.1016/j.biortech.2016.01.088

[20]

Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE.Ⅰ.Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J].Chemosphere, 2004, 55(9): 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029

[21]

龙安华, 雷洋, 张晖, 等. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908.

Long A H, Lei Y, Zhang H, et al. In situ chemical oxidation of organic contaminated soil and groundwater using activated persulfate process[J]. Progress in Chemistry, 2014, 26(5): 898-908.

[22]

严红林, 左世伟, 孙长宇, 等. 柠檬酸/Fe2+活化过硫酸钠对石油烃污染土壤的修复[J]. 石油化工, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008

Yan H L, Zuo S W, Sun C Y, et al. Remediation of petroleum hydrocarbon contaminated soil with sodium persulfate activated by citric acid and Fe2+[J].Petrochemical Technology, 2021, 50(9): 910-914. doi: 10.3969/j.issn.1000-8144.2021.09.008

[23]

肖鹏飞, 姜思佳. 活化过硫酸盐氧化法修复有机污染土壤的研究进展[J]. 化工进展, 2018, 37(12): 345-356.

Xiao P F, Jiang S J. Research progress in remediation of organic contaminated soil by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 345-356.

[24]

Monteagudo J M, El-Taliawy H, Durán A, et al. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved[J].Journal of Hazardous Materials, 2018, 357: 457-465. doi: 10.1016/j.jhazmat.2018.06.031

[25]

Peng H, Zhang W, Liu L, et al. Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil[J].Chemical Engineering Journal, 2017, 307: 750-755. doi: 10.1016/j.cej.2016.08.129

[26]

Zhen G, Lu X, Zhao Y, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(Ⅱ)-activated persulfate oxidation[J].Bioresource Technology, 2012, 116: 259-265. doi: 10.1016/j.biortech.2012.01.170

[27]

Tan C, Gao N, Deng Y, et al. Heat-activated persulfate oxidation of diuron in water[J].Chemical Engineering Journal, 2012, 203: 294-300. doi: 10.1016/j.cej.2012.07.005

[28]

Yukselen-Aksoy Y, Reddy K R. Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls[J].Electrochimica Acta, 2012, 86: 164-169. doi: 10.1016/j.electacta.2012.03.049

[29]

徐开泰, 林匡飞, 陆强, 等. 热活化过硫酸钠降解土壤体系中的菲[J]. 环境工程, 2018, 36(1): 188-194.

Xu K T, Lin K F, Lu Q, et al. Degradation of phenanthrene in soil via thermally activated sodium persulfate[J]. Environmental Engineer, 2018, 36(1): 188-194.

[30]

李永涛, 罗进, 岳东, 等. 热活化过硫酸盐氧化修复柴油污染土壤[J]. 环境污染与防治, 2017, 39(10): 1143-1146.

Li Y T, Luo J, Yue D, et al. Thermo activated persulfate oxidation for remediation of diesel oil contaminated soil[J]. Environmental Pollution & Control, 2017, 39(10): 1143-1146.

[31]

戚淑芳, 张杰, 王莹, 等. 以抗坏血酸作还原滴定剂电位滴定法测定铁矿石中全铁[J]. 冶金分析, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015

Qi S F, Zhang J, Wang Y, et al. Determination of total iron in iron ore by potentiometric titration with ascorbic acid as reducing titrant[J].Metallurgical Analysis, 2011, 31(5): 63-66. doi: 10.3969/j.issn.1000-7571.2011.05.015

[32]

中国环境监测总站. 环境水质监测质量保证手册[M] . 北京: 化学工业出版, 1989

China National Environmental Monitoring Centre . Quality assurance manual for environmental water quality monitoring[M] . Beijing: Chemical Industry Press, 1989

相似文献(共20条)

[1]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[2]

周立军, 张玲金, 苏建茹, 谢文明. 固体模拟样品中多环芳烃有机污染物提取方法研究. 岩矿测试, 2003, (2): 113-116120.

[3]

张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃. 岩矿测试, 2010, 29(5): 535-538.

[4]

杨胜科, 崔文夏, 赵钺, 陈静, 刘凯, 李斌. 过硫酸钠氧化-流动注射化学发光法在地下水腐植酸含量测定中的应用. 岩矿测试, 2012, 31(4): 677-681.

[5]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[6]

田芹, 佟玲, 安子怡, 许春雪, 孙慧中, 刁金玲. 沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质研制. 岩矿测试, 2022, 41(3): 511-520. doi: 10.15898/j.cnki.11-2131/td.202110130149

[7]

范晨子, 刘永兵, 赵文博, 刘成海, 袁继海, 郭威, 郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035

[8]

张丽珠, 刘永庆. 中国煤中多环芳烃的测定——氧化铝柱预分离高效液相色谱法. 岩矿测试, 1996, (3): 161-167.

[9]

孙书堂, 严倩, 黎宁, 黄理金, 帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014

[10]

曹攽, 马军, 李云木子. 荧光-紫外检测器高效液相色谱法检测地下水中16种多环芳烃. 岩矿测试, 2010, 29(5): 539-542.

[11]

葛晓立, 焦杏春, 袁欣, 李奇, 罗松光, 孙玮琳. 徐州土壤多环芳烃的环境地球化学迁移特征. 岩矿测试, 2008, 27(6): 409-.

[12]

徐蓉桢, 刘菲, 荆继红, 安子怡, 邹胜章. 典型浅层孔隙水和岩溶水中多环芳烃分布特征. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

[13]

李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征. 岩矿测试, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167

[14]

黄勇, 王安婷, 袁国礼, 李欢, 黄丹. 北京市表层土壤中PAHs含量特征及来源分析. 岩矿测试, 2022, 41(1): 54-65. doi: 10.15898/j.cnki.11-2131/td.202104270056

[15]

张道来, 林学辉, 周明, 陈军辉, 杨佰娟, 夏宁, 王小如. 气相色谱-质谱法快速测定罗氏海盘车中6种邻苯二甲酸酯类有机污染物. 岩矿测试, 2012, 31(1): 159-165.

[16]

时磊, 孙艳艳, 沈小明, 吕爱娟, 蔡小虎, 刘娇, 沈加林. 全二维气相色谱-电子捕获检测器测定复杂基质土壤中24种有机氯和拟除虫菊酯类农药. 岩矿测试, 2020, 39(6): 856-865. doi: 10.15898/j.cnki.11-2131/td.201906090082

[17]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[18]

魏峰, 吕爱娟, 陈海英, 郑荣华, 骆宏玉, 沈加林. 水中多环芳烃前处理过程中的污染来源及去除方法. 岩矿测试, 2011, 30(2): 169-173.

[19]

罗松光, 谢文明, 葛晓立, 张光弟, 李奇. 北京密云房山地区土壤中多环芳烃的组成与分布特征. 岩矿测试, 2004, (2): 132-136.

[20]

谢曼曼, 刘美美, 王淑贤, 凌媛, 孙青. 土壤中多环芳烃单体碳同位素分析的分离净化方法研究. 岩矿测试, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

计量
  • PDF下载量(1)
  • 文章访问量(74)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

过硫酸钠修复土壤中多环芳烃的准确测定

杨清