【引用本文】 宋昂, 彭文杰, 何若雪, 等. 好氧不产氧光合细菌反馈作用下的五里峡水库坝前水体化学特征研究[J]. 岩矿测试, 2017, 36(2): 171-179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011
SONG Ang, PENG Wen-jie, HE Ruo-xue, et al. Hydrochemistry Characteristics in front of the Wulixia Reservoir Dam Associated with Feedback from Aerobic Anoxygenic Phototrophic Bacteria[J]. Rock and Mineral Analysis, 2017, 36(2): 171-179. doi: 10.15898/j.cnki.11-2131/td.2017.02.011

好氧不产氧光合细菌反馈作用下的五里峡水库坝前水体化学特征研究

1. 

中国地质大学 (北京), 北京 100083

2. 

中国地质科学院岩溶地质研究所, 广西 桂林 541004

3. 

桂林理工大学环境科学与工程学院, 广西 桂林 541006

4. 

西南大学地理科学学院, 重庆 400715

收稿日期: 2016-12-16  修回日期: 2017-03-01  接受日期: 2017-03-25

基金项目: 广西自然科学基金杰出青年基项目金(2015GXNSFGA139010);广西自然科学基金回国基金项目(2014GXNSFCA118012);中国地质科学院基本业务费项目(YYWF201505)

作者简介: 宋昂, 硕士研究生, 研究方向为岩溶生物地球化学。E-mail:2001140311@cugb.edu.cn

通信作者: 李强, 研究员, 主要从事岩溶生物地球化学研究。E-mail: glqiangli@163.com

Hydrochemistry Characteristics in front of the Wulixia Reservoir Dam Associated with Feedback from Aerobic Anoxygenic Phototrophic Bacteria

1. 

China University of Geosciences (Beijing), Beijing 100083, China

2. 

Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

3. 

College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China

4. 

School of Geographical Science, Southwest University, Chongqing 400715, China

Corresponding author: LI Qiang, glqiangli@163.com

Received Date: 2016-12-16
Revised Date: 2017-03-01
Accepted Date: 2017-03-25

摘要:微生物是水体生物地球化学循环的主要驱动者,也是能量代谢的主要参与者,在水体生态系统多样性与稳定性方面发挥着举足轻重的作用。好氧不产氧光合细菌(AAPB)是水体中一类分布广泛的重要功能类群,它们可利用光能补充自身能量代谢,并影响水体化学组分,其重要性被人们广泛认可并深入研究。为探讨岩溶区AAPB反馈作用下的五里峡水库坝前水体化学特征,本文对坝前不同层位水体进行实地监测,在获得不同层位水体溶解有机碳和颗粒有机碳稳定碳同位素特征的基础上,采用荧光定量PCR技术检测、研究了坝前水体不同层位AAPB分布规律。结果表明:取样期五里峡水库坝前水体为HCO3--Ca2+-Mg2+贫-中营养型;通过水体溶解氧、δ13CPOCδ13CDOC和碳氮比综合分析得出,坝前水体有机碳主要由微型生物产生;AAPB占总浮游细菌的相对丰度范围在1.33%~1.60%,且AAPB在不同层位的丰度变化强度要高于总浮游细菌的丰度变化强度,表明相较于总浮游细菌,AAPB对水化学特征的反馈作用更加敏感;使用典范对应分析可揭示水体理化性质与AAPB的内在联系,结果显示AAPB和总浮游细菌均受浊度的影响较大,故基于颗粒沉降的海洋微生物泵作用也适用于陆地岩溶水库。因而,AAPB反馈作用下的水化学特征对揭示CO2-水-碳酸盐岩-微生物代谢体系具有重要的启示意义。

关键词: 好氧不产氧光合细菌, 荧光定量PCR, 岩溶水化学, 五里峡水库, 贫-中营养型水库

Hydrochemistry Characteristics in front of the Wulixia Reservoir Dam Associated with Feedback from Aerobic Anoxygenic Phototrophic Bacteria

KEY WORDS: aerobic anoxygenic phototrophic bacteria, real-time PCR, Karst hydrochemistry characteristics, Wulixia Reservoir, infertile reservoir

Highlights

· The abundance of aerobic anoxygenic phototrophic bacteria in Wulixia karst reservoir was measured by real-time PCR method.

本文参考文献

[1]

Fei Z, Hua L J, Qiang L I, et al. The research of typical microbial functional group reveals a new oceanic carbon sequestration mechanism—A case of innovative method promoting scientific discovery[J].Science China-Earth Sciences, 2016, 59(3): 456-463. doi: 10.1007/s11430-015-5202-7

[2]

Hall K, Arocena J M, Boelhouwers J, et al. The influence of aspect on the biological weathering of granites:Observations from the Kunlun mountains, China[J].Geomorphology, 2005, 67(1-2): 171-188. doi: 10.1016/j.geomorph.2004.09.027

[3]

Kolber Z S, Falkowski P G. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean[J].Science, 2001, 292(5526): 2492-2495. doi: 10.1126/science.1059707

[4]

Rawat M, Moroney J V. The regulation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase activase by light and CO2 in chlamydomonas reinhardtii[J].Plant Physiology, 1995, 109(3): 937-944. doi: 10.1104/pp.109.3.937

[5]

Shi L M, Cai Y F, Chen Z T, et al. Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom-forming lakes in China[J].Annales de Limnologie-International Journal of Limnology, 2010, 46(4): 233-239. doi: 10.1051/limn/2010024

[6]

Yurkov V, Csotonyi J T. New light on aerobic anoxygenic phototrophs[J].Advances in Photosynthesis and Respiration, 2009, 28: 31-55. doi: 10.1007/978-1-4020-8815-5

[7]

Jiao N Z, Zhang F, Hong N, et al. Significant roles of bacterio chlorophylla supplemental to chlorophylla in the ocean[J].The ISME Journal, 2010, 4(4): 595-597. doi: 10.1038/ismej.2009.135

[8]

焦念志. 海洋微型生物生态学[M] . 北京: 科学出版社, 2006: 580

Jiao N Z. Marine Microbial Ecology[M] . Beijing: Science Press, 2006: 580
[9]

Sieracki M E, Gilg I C, Thier E C, et al. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the Northwest Atlantic[J].Limnology and Oceanography, 2006, 51(1): 38-46. doi: 10.4319/lo.2006.51.1.0038

[10]

Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments[J].FEMS Microbiology Reviews, 2015, 39(6): 854-870. doi: 10.1093/femsre/fuv032

[11]

Lew S, Koblížek M, Lew M, et al. Seasonal changes of microbial communities in two shallow peat bog lakes[J].Folia Microbiologica, 2015, 60(2): 165-175. doi: 10.1007/s12223-014-0352-0

[12]

Hojerová E, Mašín M, Brunet C, et al. Distribution and growth of aerobic anoxygenic phototrophs in the mediterranean sea[J].Environmental Microbiology, 2011, 13(10): 2717-2725. doi: 10.1111/emi.2011.13.issue-10

[13]

Mašín M, Ĉuperová Z, Hojerová E, et al. Distribution of aerobic anoxygenic phototrophs in glacial lakes of Northern Europe[J].Aquatic Microbial Ecology, 2012, 66(1): 77-86. doi: 10.3354/ame01558

[14]

Caliz J, Casamayor E O. Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (Central Pyrenees)[J].Environmental Microbiology Reports, 2014, 6(2): 145-151. doi: 10.1111/1758-2229.12142

[15]

Fauteux L, Cottrell M T, Kirchman D L, et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in Northern Lakes[J].PLoS One, 2015, 10(4): e0124035. doi: 10.1371/journal.pone.0124035

[16]

Lew S, Lew M, Koblížek M, et al. Influence of selected environmental factors on the abundance of aerobic anoxygenic phototrophs in peat-bog lakes[J].Environmental Science and Pollution Research, 2016, 23(14): 13853-13863. doi: 10.1007/s11356-016-6521-8

[17]

Jonsson A, Meili M, Bergström A K, et al. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humiclake (Örträsket N, Sweden)[J].Limnology and Oceanography, 2001, 46(7): 1691-1700. doi: 10.4319/lo.2001.46.7.1691

[18]

曹建华, 袁道先, 潘根兴, 等. 岩溶动力系统中的生物作用机理初探[J]. 地学前缘, 2001, 8(1): 203-209.

Cao J H, Yuan D X, Pan G X, et al. Preliminary study on biological action in karst dynamic system[J]. Earth Science Frontier, 2001, 8(1): 203-209.

[19]

周玉婵, 曹建华, 李小方, 等. 水化学对水体着生微型生物群落组成与丰度的影响——以桂林毛村表层岩溶泉、砂页岩裂隙泉为例[J]. 中国岩溶, 2008, 27(3): 261-265.

Zhou Y C, Cao J H, Li X F, et al. Comparison of periphyton community composition and abundance under different hydro-chemical influences between epikarst spring and sand-shale fissure spring in Maocun, Guilin[J]. Carsologica Sinica, 2008, 27(3): 261-265.

[20]

李强, 靳振江. 岩溶生物地球化学研究的进展与问题[J]. 中国岩溶, 2016, 35(4): 349-356.

Li Q, Jin Z J. Perspectives on karst biogeochemistry[J]. Carsologica Sinica, 2016, 35(4): 349-356.

[21]

Muyzer G, Waal E C D, Uitterlinden A G, et al. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700.

[22]

陈晓洁, 曾永辉, 简纪常, 等. 玛珥湖好氧不产氧光合细菌pufM基因DNA和mRNA的定量及多样性分析[J]. 微生物学通报, 2012, 39: 1560-1572.

Chen X J, Zeng Y H, Jian J C, et al. Genetic diversity and quantification of aerobic anoxygenic phototrophic bacteria in Hugangyan Maar lake based on pufM DNA and mRNA analysis[J]. Microbiology China, 2012, 39: 1560-1572.

[23]

Jin Z, Tai J, Pan G, et al. Comparison of soil organic carbon, microbial diversity and enzyme activity of wetlands and rice paddies in Jingjiang area of Hubei, China[J]. Scientia Agricultura Sinica, 2012, 45: 3773-3781.

[24]

William M, Lewis J. A revised classification of lakes based on mixing[J].Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(10): 1779-1787. doi: 10.1139/f83-207

[25]

Ruhl N, Deangelis H, Crosby A M, et al. Applying a reservoir functional-zone paradigm to littoral bluegills:Differences in length and catch frequency?[J].PeerJ, 2014, 2: e528. doi: 10.7717/peerj.528

[26]

陈静生, 王飞越, 何大伟, 等. 黄河水质地球化学[J]. 地学前缘, 2006, 13(1): 58-73.

Chen J S, Wang F Y, He D W, et al. Geochemistry of water quality of the Yellow River basin[J]. Earth Science Frontiers, 2006, 13(1): 58-73.

[27]

刘文. 亚热带不同地质背景水库碳转移过程的研究[D]. 重庆: 西南大学, 2015.

Liu W.A Study on Carbon Migration Processes in Reservoir with Different Geological Setting in Subtropical Areas, SW China[D].Chongqing:Southwest University, 2015.

[28]

Zigah P K, Minor E C, Werne J P, et al. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in lake superior[J]. Global Biogeochemical Cycles, 2012, 26(1): 1346.

[29]

Li W, Wu F, Liu C, et al. Temporal and spatial distributions of dissolved organic carbon and nitrogen in two small lakes on the Southwestern China plateau[J].Limnology, 2008, 9(2): 163-171. doi: 10.1007/s10201-008-0241-9

[30]

蔡庆华, 刘建康. 评价湖泊富营养化的一个综合模型[J]. 应用生态学报, 2002, 13(12): 1674-1678. doi: 10.3321/j.issn:1001-9332.2002.12.037

Cai Q H, Liu J K. A comprehensive model for assessing lake eutrophication[J].Chinese Journal of Applied Ecology, 2002, 13(12): 1674-1678. doi: 10.3321/j.issn:1001-9332.2002.12.037

[31]

蔡庆华. 湖泊富营养化综合评价方法[J]. 湖泊科学, 1997, 9(1): 89-94. doi: 10.18307/1997.0114

Cai Q H. Method for assessing lake eutrophication[J].Journal of Lake Science, 1997, 9(1): 89-94. doi: 10.18307/1997.0114

[32]

高坤乾, 顾继光, 韩博平, 等. 三座不同营养类型水库春季细菌生理群分布特征[J]. 生态环境, 2006, 15(3): 469-474.

Gao K Q, Gu J G, Han B P, et al. Spatial distribution of heterotrophic bacteria, phosphobacteria and nitrogen-cycle bacteria among different types of reservoirs in spring[J]. Geology and Environment, 2006, 15(3): 469-474.

[33]

张朝能. 水体中饱和溶解氧的求算方法探讨[J]. 环境科学研究, 1999, 12(2): 54-55.

Zhang C N. Study on calculation method of saturation values of dissolved oxygen in waters[J]. Research of Environmental Science, 1999, 12(2): 54-55.

[34]

Vähätalo A V, Wetzel R G. Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of 13C:12C mass ratio[J].Limnology and Oceanography, 2008, 53(4): 1387. doi: 10.4319/lo.2008.53.4.1387

[35]

Raymond P A, Bauer J E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling:A review and synthesis[J].Organic Geochemistry, 2001, 32(4): 469-485. doi: 10.1016/S0146-6380(00)00190-X

[36]

Zigah P K, Minor E C, Werne J P, et al. Radiocarbon and stable carbon isotopic insights into provenance and cycling of carbon in lake superior[J].Limnology and Oceanography, 2011, 56(3): 867-886. doi: 10.4319/lo.2011.56.3.0867

[37]

Smith B N, Epstein S. Two categories of 13C/12C ratios for higher plants[J].Plant Physiology, 1971, 47(3): 380-384. doi: 10.1104/pp.47.3.380

[38]

吴莹, 张经, 曹建平, 等. 长江流域有机碳同位素地球化学特征[J]. 青岛海洋大学学报 (自然科学版), 2000, 30(2): 309-314.

Wu Y, Zhang J, Cao J P, et al. The character of carbon isotope geochemistry of the Changjiang drainage basin[J]. Journal of Ocean University of Qingdao (Natural Science), 2000, 30(2): 309-314.

[39]

许斐, 杨守业, 展望, 等. 三峡水库建设对长江下游颗粒有机碳通量及碳同位素组成的影响[J]. 地球化学, 2011, 40(2): 199-208.

Xu F, Yang S Y, Zhan W, et al. Influence of the impoundment of the Three Gorges reservoir on the flux and isotopic composition of particulate organic carbon in the lower Changjiang mainstream[J]. Geochimica, 2011, 40(2): 199-208.

[40]

张彦鹏, 周爱国, 周建伟, 等. 石家庄地区地下水中溶解性有机碳同位素特征及其环境指示意义[J]. 水文地质工程地质, 2013, 40(3): 12-18.

Zhang Y P, Zhou A G, Zhou J W, et al. Characteristics of dissolved organic carbon isotope in groundwater in Shijiazhuang and its environmental implications[J]. Hydrogeology and Engineering Geology, 2013, 40(3): 12-18.

[41]

于志同, 王秀君, 赵成义, 等. 基于多指标分析的博斯腾湖表层沉积物有机碳来源[J]. 湖泊科学, 2015, 27(5): 983-990. doi: 10.18307/2015.0526

Yu Z T, Wang X J, Zhao C Y, et al. Source characterization of organic carbon using elemental, isotopic and nalkanes proxies in surface sediment from Lake Bosten, Xinjiang[J].Journal of Lake Science, 2015, 27(5): 983-990. doi: 10.18307/2015.0526

[42]

张飞, 刘纪化, 李强, 等. 从微型生物功能类群研究到海洋储碳机制的新认识——方法创新带动科学发现的一个典型案例[J]. 中国科学 (地球科学), 2016, 46(1): 9-18.

Zhang F, Liu J H, Li Q, et al. From the microbial function groups research to ocean carbon storage mechanism—A typical case of method innovation in new impetus scientific discovery[J]. Science China:Earth Sciences, 2016, 46(1): 9-18.

[43]

陈晓洁. 湖光岩玛珥湖好氧不产氧光合细菌遗传多样性的分析[D]. 广州: 广东海洋大学, 2012.

Chen X J.Gentic Diversity of Aerobic Anoxgyenic Phototropic Bacteria in Huguangyan Maar Lake[D].Guangzhou:Guangdong Ocean University, 2012.

[44]

Fauteux L, Cottrell M T, Kirchman D L, et al. Patterns in abundance, cell size and pigment content of aerobic anoxygenic ahototrophic bacteria along environmental gradients in Northern Lakes[J]. PLoS One, 2015, 10(4): 1-17.

[45]

焦念志, MichaeleE S, 张瑶, 等. 好氧不产氧光合异养细菌及其在海洋生态系统中的作用[J]. 科学通报, 2003, 48(6): 530-534.

Jiao N Z, Michael E S, Zhang Y, et al. Aerobic anoxygenic phototrophic bacteria and the role in ocean ecosystem[J]. Chinese Science Bulletin, 2003, 48(6): 530-534.

[46]

Hauruseu D, Koblížek M. Influence of light on carbon utilization in aerobic anoxygenic phototrophs[J].Applied and Environmental Microbiology, 2012, 78(20): 7414-7419. doi: 10.1128/AEM.01747-12

[47]

Kirchman D L, Hanson T E. Bioenergetics of photoheter-otrophic bacteria in the oceans[J].Environmental Microbiology Reports, 2013, 5(2): 188-199. doi: 10.1111/emi4.2013.5.issue-2

[48]

李强. 环境因子对AAPB的生长和色素表达的影响[D]. 厦门: 厦门大学, 2006.

Li Q.Effects of Carbon Source and Salinity on Population Structure of Aerobic Anoxygenic Phototrophic Bacteria in Lake Ulansuhai[D].Xiamen:Xiamen University, 2006.

[49]

赵吉睿. 碳源和盐度对乌梁素海水体好氧不产氧光合细菌群落结构影响[D]. 呼和浩特: 内蒙古农业大学, 2013: 37-41.

Zhao J R.Effects of Carbon Source and Salinity on Population Structure of Aerobic Anoxygenic Phototrophic Bacteria in Lake Ulansuhai[D].Hohhot:Inner Mongolia Agricultural University, 2013:37-41.

[50]

Jiao N Z, Zhang Y, Zeng Y, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean[J].Environmental Microbiology, 2007, 9(12): 3091-3099. doi: 10.1111/emi.2007.9.issue-12

[51]

焦念志, 骆庭伟, 张瑶, 等. 海洋微型生物碳泵——从微型生物生态过程到碳循环机制效应[J]. 厦门大学学报 (自然科学版), 2011, 50(2): 387-401.

Jiao N Z, Luo T W, Zhang Y, et al. Microbial carbon pump in the oceanfrom microbial ecological process to carbon cycle mechanism[J]. Journal of Xiamen University (Natural Science), 2011, 50(2): 387-401.

[52]

赵子豪. 典型中国海好氧不产氧光合异养细菌 (AAPB) 生长动力学之研究[D]. 厦门: 厦门大学, 2012.

Zhao Z H.Research of Aerobic Anoxygenic Phototrophic Bacteria (AAPB) Growth Dynamic in Typical China Sea[D].Xiaomen:Xiamen University, 2012.

[53]

赵吉睿, 巩瑞红, 李畅游, 等. 三种碳源对乌梁素海好氧不产氧光合细菌群落结构的影响[J]. 湖泊科学, 2014, 26(1): 113-120. doi: 10.18307/2014.0114

Zhao J R, Gong R H, Li C Y, et al. Influence of three kinds of carbon source on community structure of aerobic anoxygenic phototrophic bacteria in Lake Ulansuhai[J].Journal of Lake Science, 2014, 26(1): 113-120. doi: 10.18307/2014.0114

相似文献(共18条)

[1]

黄婕, 于奭, 罗惠先, 林丹辉. 西江流域水文水化学因子对岩溶系统碳汇通量的影响分析. 岩矿测试, 2016, 35(6): 642-649. doi: 10.15898/j.cnki.11-2131/td.2016.06.011

[2]

马瑞杰, 刘晓端, 李欣, 徐清. 水库有机污染物生化需氧量-溶解氧和温度的耦合模型研究与应用. 岩矿测试, 2005, (2): 105-108.

[3]

潘小川, 刘晓端, 李奇, 葛晓立, 罗松光. 密云水库水体的地球化学特征. 岩矿测试, 2003, (1): 44-48.

[4]

于扬, 王伟, 王登红, 高娟琴, 刘善宝, 袁蔺平, 于沨, 张塞. 水化学找矿法及其在大型资源基地绿色调查中的应用——以川西九龙地区地表水化学找矿为例. 岩矿测试, 2021, 40(2): 227-238. doi: 10.15898/j.cnki.11-2131/td.202004080040

[5]

周兴志, 刘晓端, 陈明, 张玲金, 张前进. 风成沙系统去除官厅水库水中化学需氧量的效果. 岩矿测试, 2002, (3): 195-198.

[6]

刘晓端, 刘浏, 武佃卫, 徐清. 密云水库沉积物-水界面磷的地球化学作用. 岩矿测试, 2004, (4): 246-250.

[7]

赵庆令, 李清彩, 谢江坤, 史启朋, 陈丽娇. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

[8]

谷照升, 徐清, 刘晓端. 密云水库水质分布的相关性研究. 岩矿测试, 2004, (4): 278-284.

[9]

裴建国, 章程, 张强, 朱琴. 典型岩溶水系统碳汇通量估算. 岩矿测试, 2012, 31(5): 884-888.

[10]

周长松, 邹胜章, 谢浩, 朱丹尼, 陈宏峰, 俞建国. 测试滞后对岩溶水样性质的影响研究. 岩矿测试, 2019, 38(1): 92-101. doi: 10.15898/j.cnki.11-2131/td.201711040175

[11]

张建锋, 刘汉彬, 石晓, 金贵善, 李军杰, 张佳, 韩娟, 郭东侨, 钟芳文. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究. 岩矿测试, 2019, 38(1): 45-54. doi: 10.15898/j.cnki.11-2131/td.201805170062

[12]

毛立音. 湖北鄂州市石家湾水库淤积的物质来源探讨. 岩矿测试, 2000, (3): 185-187.

[13]

葛晓立, 刘浏, 徐清, 刘晓端, 王英华. 密云水库沉积物中磷的形态和分布特征. 岩矿测试, 2003, (2): 81-85.

[14]

徐清, 刘浏, 武佃卫, 刘晓端. 密云水库沉积物中磷释放的环境因子影响实验. 岩矿测试, 2005, (1): 19-22.

[15]

李海明, 马斌, 李子琛, 赵雪. 地下咸水与水库水体交换过程中沉积物胶体释放规律. 岩矿测试, 2012, 31(5): 849-854.

[16]

陈正明, 周家贵, 刘松林. 气相色谱法测定岩溶水中氰化物. 岩矿测试, 1983, (4): 295-297.

[17]

徐蓉桢, 刘菲, 荆继红, 安子怡, 邹胜章. 典型浅层孔隙水和岩溶水中多环芳烃分布特征. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

[18]

李强, 黄雅丹, 何若雪, 于奭, 宋昂, 曹建华. 岩溶水体惰性有机碳含量及其存在机理. 岩矿测试, 2018, 37(5): 475-478. doi: 10.15898/j.cnki.11-2131/td.201807250088

计量
  • PDF下载量(11)
  • 文章访问量(3287)
  • HTML全文浏览量(1391)
  • 被引次数(0)
目录

Figures And Tables

好氧不产氧光合细菌反馈作用下的五里峡水库坝前水体化学特征研究

宋昂, 彭文杰, 何若雪, 靳振江, 卢晓漩, 房君佳, 黄炳慧, 李强