【引用本文】 李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167
LI Yu-fang, PAN Meng, GU Tao, et al. Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167

北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质调查局武汉地质调查中心, 湖北 武汉 430205

3. 

中国地质大学(武汉), 湖北 武汉 430074

收稿日期: 2019-12-04  修回日期: 2020-02-14  接受日期: 2020-04-20

基金项目: 国家自然科学基金面上项目(41473008)

作者简介: 李玉芳, 硕士研究生, 分析化学专业。E-mail:1012584280@qq.com

通信作者: 宋淑玲, 博士, 研究员, 主要从事有机污染物分析技术及人体暴露研究。E-mail:songshuling163@163.com

Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China

3. 

China University of Geosciences(Wuhan), Wuhan 430074, China

Corresponding author: SONG Shu-ling, songshuling163@163.com

Received Date: 2019-12-04
Revised Date: 2020-02-14
Accepted Date: 2020-04-20

摘要:多环芳烃(PAHs)是一类普遍存在于水圈、生物圈、岩石圈和大气圈的持久性有机污染物,并在各种环境介质中交换、迁移,从而影响人体健康。以母乳为介质,评价哺乳期女性和婴幼儿PAHs暴露风险具有重要意义。早期研究表明,北京母乳中PAHs浓度在全球范围内处于较高水平。本文项目组在2012-2016年间,连续采集北京地区30位哺乳期女性6个月母乳,并检测其中PAHs浓度,旨在掌握该地区母乳中PAHs残留水平、婴幼儿的暴露量,以及哺乳期母体和婴幼儿暴露风险的变化趋势与特征。通过对30位女性分娩后连续6个月内180个母乳中15种PAHs的监测,采用气相色谱-质谱法(GC-MS)测定其含量,初步研究结果表明:①15种PAHs都有检出,其中检出浓度和检出率高的单体化合物包括菲、芴、苊烯、蒽、苊和荧蒽。母乳样品中Σ15PAHs的浓度均值为348μg/kg脂质,与2005年该地区的报道值相比有下降趋势。②15种PAHs和7种高致癌活性PAHs的苯并[a]芘的等效致癌活性(BaPeq)浓度分别为8.53μg/kg脂质和7.89μg/kg脂质,婴幼儿每日暴露估算值分别为1.51μg/day/kg b.w.和0.19μg/day/kg b.w.,均比2005年有所下降,但高于捷克、美国、土耳其等国家婴幼儿在母乳喂养期的暴露量,低于我国兰州等重工业城市最新暴露量研究结果。③整个哺乳期,母乳中PAHs的总浓度没有明显下降趋势,但冬季可能由于采暖增加了大气中PAHs的排放,使得母乳样品中15种PAHs总浓度明显高于夏季、秋季和春季。SPSS双变量相关分析结果表明,母乳中15种PAHs的总浓度与母体年龄、身体质量指数和母乳脂肪含量不存在相关性。未来工作中需要更加充足的样品分析数据进一步证实以上研究结果。

关键词: 多环芳烃, 气相色谱-质谱法, 暴露风险, 母体, 婴幼儿, 每日允许摄入量

要点

(1) 北京哺乳期女性及婴幼儿PAHs暴露量和暴露风险与早期相比呈下降趋势。

Exposure of Mother and Infants to Polycyclic Aromatic Hydrocarbons during Lactation, Beijing

ABSTRACT

BACKGROUND:

Polycyclic aromatic hydrocarbons (PAHs) are classic persistent organic pollutants in the hydrosphere, lithosphere, biosphere and atmosphere, which have a harmful effect on human health by exchanging and migrating among various environmental media. Breast milk is an ideal biometric to monitor the exposure risk of mothers and infants to PAHs. Earlier research indicated that the residue levels of PAHs in breast milk from Beijing were higher in the world.

OBJECTIVES:

To understand the changes in the residue levels of PAHs in breast milk in the region, the exposure of infants, and the trends and characteristics of the exposure risk of breastfeeding mothers and infants.

METHODS:

For 30 first-delivery women in Beijing, a breast milk sample per month within 180 days postpartum period was collected. The PAHs and fat content of breast milk were determined by gas chromatography-mass spectrometry (GC-MS) and monitored to study the time tendency of PAHs and estimate the exposure risk of infants to PAHs.

RESULTS:

The dominant pollutants were acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene. The average concentration of Σ15PAHs in 180 samples was 348μg/kg lipid, which was lower than the value reported in 2005. Compared to the early reported residue level, the BaP-equivalent (BaPeq) concentrations decreased, which were 7.89μg/kg lipid for seven carcinogenic compounds, and 8.53μg/kg lipid for 15 PAHs. For breastfeeding infants in Beijing, the mean acceptable daily intakes (EDIs) of Σ15PAHs and Σ7PAHs through breast milk were 1.51μg/day/kg b.w. and 0.19μg/day/kg b.w., respectively, which was lower than those in 2005. However, it was higher than the exposure of infants in some countries such as Czech, America, Turkey during breastfeeding, and lower than the latest research results of Lanzhou and other heavy industrial cities in China. Throughout the lactation period, the total concentration of PAHs in breast milk did not decrease significantly, but winter heating may increase the emission of PAHs in the atmosphere, making the total concentration of 15 PAHs in breast milk samples significantly higher than that in summer, autumn, and spring.

CONCLUSIONS:

Bivariate correlations analytical results show that the concentration of Σ15PAHs is not associated with age, BMI and lipid content. Limited by sample size, those results should be confirmed with perfect experiment design and sufficient samples in future studies.

KEY WORDS: polycyclic aromatic hydrocarbons, gas chromatography-mass spectrometry, exposure risk, mother, infant, acceptable daily intakes

HIGHLIGHTS

(1) For mother and breast-feeding infants, the exposure dose and risk to PAHs were decreasing.

本文参考文献

[1]

Gilio A D, Ventrella G, Giungato P, et al. An intensive monitoring campaign of PAHs for assessing the impact of a steel plant[J].Chemosphere, 2017, 168: 171-182. doi: 10.1016/j.chemosphere.2016.10.019

[2]

Abdel-Shafy H I, Mansour M S M. A Review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2015, 25: 107-123.

[3]

Amodio M, Andriani E, Dambruoso P R, et al. A monitoring strategy to assess the fugitive emission from a steel plant[J].Atmosphere Environment, 2013, 79: 455-461. doi: 10.1016/j.atmosenv.2013.07.001

[4]

Cakmak S, Hebbern C, Cakmak J D, et al. The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J].Envirnmental Pollution, 2017, 228: 1-7. doi: 10.1016/j.envpol.2017.05.013

[5]

Yang J, Qadeer A, Liu M, et al. Occurrence, source, and partition of PAHs, PCBs, and OCPs in the multiphase system of an urban lake, Shanghai[J].Applied Geochemistry, 2019, 106: 17-25. doi: 10.1016/j.apgeochem.2019.04.023

[6]

Qu C S, Li B, Wu H S, et al. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons[J].Environmental Geochemistry and Health, 2015, 37: 587-601. doi: 10.1007/s10653-014-9675-7

[7]

Ruby M V, Lowney Y W, Bunge A L, et al. Oral bioavail-ability, bioaccessibility, and dermal absorption of PAHs from soil-State of the science[J]. Environmental Science & Technology, 2016, 50: 2151-2164.

[8]

Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J].Environmental Geochemistry and Health, 2017, 39(6): 1487-1499. doi: 10.1007/s10653-017-9936-3

[9]

Sun H W, An T C, Li G Y, et al. Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China[J].Environmental Science and Pollution Research, 2014, 21(17): 10083-10095. doi: 10.1007/s11356-014-3031-4

[10]

Çok I, Mazmanci B, Mazmanci M A, et al. Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey[J].Environment International, 2012, 40: 63-69. doi: 10.1016/j.envint.2011.11.012

[11]

Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J].Journal of Hazardous Materials, 2020, 386: 121663. doi: 10.1016/j.jhazmat.2019.121663

[12]

Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J].Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015

[13]

Wang F D, Zhang H J, Geng N B, et al. A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs)[J].Environmental Pollution, 2018, 234: 572-580. doi: 10.1016/j.envpol.2017.11.073

[14]

Pinto M, Rebola M, Louro H, et al. Chlorinated polycyclic aromatic hydrocarbons associated with drinking water disinfection:Synthesis, formation under aqueous chlorination conditions and genotoxic effects[J].Polycyclic Aromatic Compounds, 2014, 34: 356-371. doi: 10.1080/10406638.2014.891143

[15]

Farzan S F, Chen Y, Trachtman H, et al. Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents:NHANES 2003-2008[J].Environmental Research, 2016, 144: 149-157. doi: 10.1016/j.envres.2015.11.012

[16]

IARC.Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[R]//IARC monographs on the evaluation of carcinogenic risks to humans.WHO IARC, 2010:92.

[17]

Bae S, Pan X C, Kim S Y, et al. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in school children[J]. Environmental Health Perspectives, 2010, 118: 579-583. doi: 10.1289/ehp.0901077

[18]

Ohura T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons[J].Scientific World Journal, 2007, 7: 372-380. doi: 10.1100/tsw.2007.75

[19]

Armstrong B G, Gibbs G. Exposure-response relationship between lung cancer and polycyclic aromatic hydrocarbons (PAHs)[J].Occupational and Environ-mental Medicine, 2009, 66: 740-746. doi: 10.1136/oem.2008.043711

[20]

Zhou Y, Sun H, Xie J, et al. Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China[J].American Journal of Respiratory and Critical Care Medicine, 2016, 193: 835-846. doi: 10.1164/rccm.201412-2279OC

[21]

Jedrychowski W A, Perera F P, Maugeri U, et al. .Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow[J].Science of the Total Environment, 2015, 502: 502-509. doi: 10.1016/j.scitotenv.2014.09.051

[22]

Padula A M, Balmes J R, Eisen E A, et al. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children[J].Journal of Exposure Science and Environmental Epidemiology, 2015, 25: 295-302. doi: 10.1038/jes.2014.42

[23]

Barraza-Villarreal A, Escamilla-Nunez M C, Schilmann A, et al. Lung function, airway inflammation, and polycyclic aromatic hydrocarbons exposure in Mexican school children:A pilot study[J].Journal of Occupational and Environmental Medicine, 2014, 56: 415-419. doi: 10.1097/JOM.0000000000000111

[24]

Mu G, Fan L Y, Zhou Y, et al. Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration:Results of a panel study in China[J].Science of the Total Environment, 2019, 684: 458-465. doi: 10.1016/j.scitotenv.2019.05.328

[25]

Wang L, Li C M, Jiao B N, et al. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables:Levels, dietary intakes, and health risk assessments[J].Science of the Total Environment, 2018, 616-617: 288-295. doi: 10.1016/j.scitotenv.2017.10.336

[26]

Sun J L, Zeng H, Ni H G, et al. Halogenated polycyclic aromatic hydrocarbons in the environment[J].Chemosphere, 2013, 90: 1751-1759. doi: 10.1016/j.chemosphere.2012.10.094

[27]

Sun J L, Ni H G, Zeng H, et al. Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization[J].Journal of Environmental Monitoring, 2011, 13: 2775-2781. doi: 10.1039/c1em10465a

[28]

Hong Q, Li W L, Zhu N Z, et al. Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China[J].Science of the Total Environment, 2014, 491-492: 100-107. doi: 10.1016/j.scitotenv.2014.01.119

[29]

Sun J L, Jing X, Chang W J, et al. Cumulative health risk assessment of halogenated and parent poly-cyclic aromatic hydrocarbons associated with particulate matters in urban air[J].Ecotoxicology and Environmental Safety, 2015, 113: 31-37. doi: 10.1016/j.ecoenv.2014.11.024

[30]

Ding C, Ni H G, Zeng H, et al. Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China[J].Environmental Pollution, 2012, 168: 80-86. doi: 10.1016/j.envpol.2012.04.025

[31]

Santonicola S, Felice A D, Cobellis L, et al. Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment[J].Chemosphere, 2017, 175: 383-390. doi: 10.1016/j.chemosphere.2017.02.084

[32]

Pulkrabova J, Stupak M, Svarcova A, et al. Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk[J].Science of the Total Environment, 2016, 562: 640-647. doi: 10.1016/j.scitotenv.2016.04.013

[33]

Luzardo P O, Ruiz-Suárez N, Almeida-González M, et al. Multi-residue method for the determination of 57 persistent organic pollutants in human milk and colostrum using a QuEChERS-based extraction procedure[J].Analytical and Bioanalytical Chemistry, 2013, 405: 9523-9536. doi: 10.1007/s00216-013-7377-0

[34]

Kishikawa N, Wada M, Kuroda N, et al. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluore-scence detection[J].Journal of Chromatography B, 2003, 789: 257-264. doi: 10.1016/S1570-0232(03)00066-7

[35]

Yu Y X, Wang X L, Wang B, et al. Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China[J]. Environmental Science & Technology, 2011, 45: 10235-10242.

[36]

Song S L, Ma X D, Pan M, et al. Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum[J].Environmental Monitoring and Assessment, 2018, 190: 457. doi: 10.1007/s10661-018-6850-9

[37]

Kim S, Halden R, Buckley T J, et al. Polycyclic aromatic hydrocarbons in human milk of nonsmoking U.S.women[J]. Environmental Science & Technology, 2008, 42: 2663-2667.

[38]

Tsang H L, Wu S C, Leung C K M, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum[J].Environment International, 2011, 37: 142-151. doi: 10.1016/j.envint.2010.08.010

[39]

Wang L, Liu A P, Zhao Y, et al. The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, northwest China[J]. Environmental Science and Pollution Research, 2018, 25(9): 1-13.

[40]

Xu S, Liu W, Tao S, et al. Emission of polycyclic aromatic hydrocarbons in China[J]. Environmental Science & Technology, 2006, 40: 702-708.

[41]

Yu Y X, Li Q, Wang H, et al. Risk of human exposure to polycyclic aromatic hydrocarbons:A case study in Beijing, China[J].Environmental Pollution, 2015, 205: 70-77. doi: 10.1016/j.envpol.2015.05.022

[42]

Zhang Y J, Lin Y, Cai J, et al. Atmospheric PAHs in North China:Spatial distribution and sources[J].Science of the Total Environment, 2016, 565: 994-1000. doi: 10.1016/j.scitotenv.2016.05.104

[43]

王英锋, 张姗姗, 李杏茹, 等. 北京大气颗粒物中多环芳烃浓度季节变化及来源分析[J]. 环境化学, 2010, 29(3): 369-375.

Wang Y F, Zhang S S, Li X R, et al. Seasonnal variation and source identification of polycyclic aromatic hydrocarbons (PAHs) in airborne particulates of Beijing[J]. Environmental Chemistry, 2010, 29(3): 369-375.

[44]

董雪玲, 刘大锰, 袁杨鬙, 等. 北京市大气PM10和PM2.5中有机物的时空变化[J]. 环境科学, 2009, 30(2): 328-332.

Dong X L, Liu D M, Yuan Y S, et al. Spatial-temporal variations of extractable organic matters in atmospheric PM10 and PM2.5 in Beijing[J]. Environmental Science, 2009, 30(2): 328-332.

[45]

张秀川, 赵健, 王婷, 等. 2014年北京市某区不同空气质量下大气颗粒物中多环芳烃的特征与来源分析[J]. 环境卫生学杂志, 2019, 9(2): 97-102.

Zhang X C, Zhao J, Wang T, et al. Characteristics and sources analysis of polycyclic aromatic hydrocarbons in atmosphere particulate matters under different air quality in a district of Beijing in 2014[J]. Journal of Environmental Hygiene, 2019, 9(2): 97-102.

[46]

Achary N, Gautam B, Subbiah S, et al. Polycyclic aromatic hydrocarbons in breast milk of obese vs normal women:Infant exposure and risk assessment[J].Science of the Total Environment, 2019, 668: 658-667. doi: 10.1016/j.scitotenv.2019.02.381

[47]

US EPA.Polycyclic organic matter.http://www.epa.gov/ttnatw01/hlthef/polycycl.html[EB/OL]. Washington D.C.: Environmental Protection Agency, 2002.

[48]

Tue N M, Sudaryanto A, Minh T B, et al. Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls in Vietnamese human breast milk[J].Chemosphere, 2010, 81(8): 1006-1011. doi: 10.1016/j.chemosphere.2010.09.013

[49]

van Oostdam J, Gilman A, Dewailly E, et al. Human health implications of environmental contaminants in Arctic Canada:A review[J].Science of the Total Environment, 1999, 230: 1-82. doi: 10.1016/S0048-9697(99)00036-4

相似文献(共19条)

[1]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[2]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[3]

张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃. 岩矿测试, 2010, 29(5): 535-538.

[4]

孙书堂, 严倩, 黎宁, 黄理金, 帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014

[5]

徐蓉桢, 刘菲, 荆继红, 安子怡, 邹胜章. 典型浅层孔隙水和岩溶水中多环芳烃分布特征. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

[6]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[7]

张道来, 刘娜, 朱志刚, 路晶芳, 林学辉, 侯国华, 印萍. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价. 岩矿测试, 2016, 35(5): 521-529. doi: 10.15898/j.cnki.11-2131/td.2016.05.011

[8]

张丽珠, 刘永庆. 中国煤中多环芳烃的测定——氧化铝柱预分离高效液相色谱法. 岩矿测试, 1996, (3): 161-167.

[9]

曹攽, 马军, 李云木子. 荧光-紫外检测器高效液相色谱法检测地下水中16种多环芳烃. 岩矿测试, 2010, 29(5): 539-542.

[10]

刘金巍, 安彩秀, 王磊, 王芸, 祁春景, 刘庆学. 质谱法测定大气颗粒物中多环芳烃的内标选择和质量控制. 岩矿测试, 2012, 31(2): 325-330.

[11]

周立军, 张玲金, 苏建茹, 谢文明. 固体模拟样品中多环芳烃有机污染物提取方法研究. 岩矿测试, 2003, (2): 113-116120.

[12]

沈小明, 吕爱娟, 沈加林, 胡璟珂, 时磊, 蔡小虎. 长江口启东—崇明岛航道沉积物中多环芳烃分布来源及生态风险评价. 岩矿测试, 2014, 33(3): 379-385.

[13]

徐洁, 鲜啟鸣. 气相色谱-质谱法分析某阻燃剂生产厂周边淡水鱼中的多溴联苯醚及其累积特征. 岩矿测试, 2017, 36(4): 405-412. doi: 10.15898/j.cnki.11-2131/td.201702200017

[14]

刘永庆, 张丽珠. 原煤尾气和煤渣中多环芳烃相关性测定. 岩矿测试, 1996, (4): 268-273.

[15]

刘裕明, 彭林, 曾凡刚, 陈名樑. 太原市大气总悬浮颗粒物中正构烷烃和多环芳烃空间分布及来源分析. 岩矿测试, 2003, (3): 206-210.

[16]

罗松光, 谢文明, 葛晓立, 张光弟, 李奇. 北京密云房山地区土壤中多环芳烃的组成与分布特征. 岩矿测试, 2004, (2): 132-136.

[17]

赵起越, 陈添, 李新中. 燃烧麦秸对大气颗粒物中多环芳烃含量的影响. 岩矿测试, 2003, (4): 273-276.

[18]

焦杏春, 叶传永, 武振艳, 罗松光, 刘煜. 多环芳烃在水稻籽粒中的分布及其与环境介质含量的关系. 岩矿测试, 2010, 29(4): 331-334.

[19]

魏峰, 吕爱娟, 陈海英, 郑荣华, 骆宏玉, 沈加林. 水中多环芳烃前处理过程中的污染来源及去除方法. 岩矿测试, 2011, 30(2): 169-173.

计量
  • PDF下载量(8)
  • 文章访问量(171)
  • HTML全文浏览量(46)
  • 被引次数(0)
目录

Figures And Tables

北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征

李玉芳, 潘萌, 顾涛, 佟玲, 宋淑玲