【引用本文】 袁静, 刘建坤, 郑荣华, 等. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析[J]. 岩矿测试, 2020, 39(6): 816-827. doi: 10.15898/j.cnki.11-2131/td.202001070007
YUAN Jing, LIU Jian-kun, ZHENG Rong-hua, et al. Studies on Characteristics of High-energy Polarized Energy-dispersive X-ray Fluorescence Spectrometer and Determination of Major and Trace Elements in Geological Samples[J]. Rock and Mineral Analysis, 2020, 39(6): 816-827. doi: 10.15898/j.cnki.11-2131/td.202001070007

高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析

中国地质调查局南京地质调查中心, 华东地质科技创新中心, 江苏 南京 210016

收稿日期: 2020-01-07  修回日期: 2020-07-28  接受日期: 2020-09-19

基金项目: 国家重点研发计划项目“土地生态恢复评价检验检测及质量控制标准研究”(2017YFF0206804)

作者简介: 袁静, 硕士, 工程师, 主要从事X射线荧光光谱分析方法的研究与应用。E-mail:candyyj@126.com

通信作者: 沈加林, 硕士, 高级工程师, 主要从事分析测试、物相分析、地质矿产研究。E-mail:sjlilu@163.com

Studies on Characteristics of High-energy Polarized Energy-dispersive X-ray Fluorescence Spectrometer and Determination of Major and Trace Elements in Geological Samples

Nanjing Center of Geological Survey, China Geological Survey, East China Center for Geoscience Innovation, Nanjing 210016, China

Corresponding author: SHEN Jia-lin, sjlilu@163.com

Received Date: 2020-01-07
Revised Date: 2020-07-28
Accepted Date: 2020-09-19

摘要:高能偏振能量色散X射线荧光光谱仪由于其高能特性为包括重金属和稀土元素在内的原子序数较大的重元素分析带来了新的契机。本文应用高能偏振X射线荧光光谱仪(HE-P-EDXRF)建立了土壤、岩石和水系沉积物中主微量元素分析方法,对分析线的选择、谱线重叠干扰校正及基体校正模式等进行了探讨,并用不确定度对方法进行了评估。研究表明:①原子序数较大的微量元素选取Kα线作为分析线,谱线重叠干扰较少,有利于获得谱峰净强度,甚至La、Ce和Nd等稀土元素也能够准确测定;②合适的基体校正方法能够改善标准曲线拟合效果;③微量元素Ba和稀土元素La、Ce等,HE-P-EDXRF方法检出限具有明显优势,而对于轻元素WDXRF方法检出限更低;④检验样本除Na2O、MgO、P和Sm外平均相对误差均在15%以下,微量元素相对平均误差在2.40%~16.3%之间,除Cu和Yb外其余微量元素准确度结果显著优于WDXRF;⑤根据欧盟和国际上不确定度的评估方法,除V和Th外,其他微量元素与有证标准物质的认定值间不存在显著性差异。综合来看,本方法更适用于分析岩石、土壤和沉积物等常规地质样品中的微量和稀土元素,解决了此类样品中微量元素对ICP-MS等需复杂化学前处理的分析方法的依赖。

关键词: 高能偏振能量色散X射线荧光光谱法, 地质样品, 粉末压片, 主微量元素

要点

(1) 粉末压片制样简便、快速,克服了地质样品中稀土和微量元素分析对需要复杂化学前处理分析方法的依赖。

(2) 原子序数较大的微量和稀土元素选取Kα线作为分析线,谱线重叠干扰较少,有利于获取谱峰净强度。

(3) 根据欧盟不确定度评估方法,除V和Th外的其他微量元素测量结果与有证标准物质的推荐值间不存在显著性差异。

Studies on Characteristics of High-energy Polarized Energy-dispersive X-ray Fluorescence Spectrometer and Determination of Major and Trace Elements in Geological Samples

ABSTRACT

BACKGROUND:

The quantification of trace elements in geological samples depends largely on the analytical methods that require complex chemical pretreatment. High-energy polarized energy-dispersive X-ray fluorescence spectrometry (HE-P-EDXRF) has a considerable advantage for the determination of trace elements with large atomic numbers, due to its high-energy properties, which can effectively excite the Kα line of heavy elements.

OBJECTIVES:

To establish a HE-P-EDXRF method for quantitative analysis of major and trace elements in geological samples.

METHODS:

HE-P-EDXRF was used to establish an analysis method for major and trace elements in soil, rock and water system sediments. The selection of analysis lines, line overlap interference correction and matrix correction modes were discussed. Uncertainty was used to evaluate the method.

RESULTS:

The Kα line was selected as the analysis line for trace elements with a larger atomic number due to less interference from the spectral line overlap, which is beneficial to obtaining the net peak intensity. Rare earth elements such as La, Ce and Nd can be accurately measured. Detection limits of the trace element Ba and rare earth elements such as La, Ce determined by EDXRF were greater than those determined by WDXRF, but lesser for light elements. For all the major and trace elements, the average of relative error of test training data was less than 15% except for Na2O, MgO, P and Sm. The average relative error of trace elements was between 2.40% and 16.3%. The accuracy of trace elements (except Cu and Yb) was significantly better than that of WDXRF. According to the evaluation method of the Europe Union, no significant difference existed between the trace elements results (except V and Th) and the recommended value of certified reference materials.

CONCLUSIONS:

HE-P-EDXRF is a simple, fast and environmentally-friendly method that can simultaneously analyze multiple elements in geological samples. This method is suitable for quantification of the trace and rare earth elements in rock, soil and sediment, which overcomes the dependence of quantitative analysis of rare earth and trace elements in geological samples on the need for methods requiring complex chemical pretreatment.

KEY WORDS: high-energy polarized energy-dispersive X-ray fluorescence spectrometry, geological samples, pressed-powder pellets, major and trace elements

HIGHLIGHTS

(1) XRF with pressed-powder pellets is simple and fast, which avoids the dependence of quantitative analysis of rare earth and trace elements in geological samples on the need for complex chemical pretreatment.

(2) The Kα line is selected as the analysis line for trace and rare earth elements with a larger atomic number, resulting in less interference from the spectral line overlaps, which is beneficial to obtaining the net peak intensity.

(3) No significant difference exists between the trace elements results (except V and Th) and the recommended value of certified reference materials according to the EU's uncertainty assessment method.

本文参考文献

[1]

谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716.

Xie X J, Ren T X, Xi X H, et al. The implementation of the Regional Geochemistry-National Reconnaissance Program (RGNR) in China in the past thirty years[J].Acta Geoscientica Sinica, 2009, 30(6): 700-716.

[2]

张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, (7): 1090-1097.

Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J].Chinese Journal of Analytical Chemistry, 2019, (7): 1090-1097.

[3]

孙萱, 宋金明, 温廷宇, 等. X射线荧光光谱法测定海洋沉积物中的41种元素及氧化物[J]. 海洋科学, 2018, (4): 79-88.

Sun X, Song J M, Wen T Y, et al. Determination of 41 elements and oxides in marine sediments by X-ray fluorescence spectrometry[J].Marine Sciences, 2018, (4): 79-88.

[4]

沈亚婷, 李迎春, 孙梦荷, 等. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J]. 光谱学与光谱分析, 2017, 37(7): 2216-2224.

Shen Y T, Li Y C, Sun M H, et al. Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J].Spectroscopy and Spectral Analysis, 2017, 37(7): 2216-2224.

[5]

Luo L Q, Chu B B, Liu Y, et al. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine[J].Environmental Science & Pollution Research, 2014, 21(13): 8242-8260.

[6]

谭丽娟, 唐玉霜, 黄利宁, 等. 氢化物发生-原子荧光光谱法测定1:5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J]. 中国无机分析化学, 2019, 9(4): 19-23.

Tan L J, Tang Y S, Huang L N, et al. Determination of regional geochemical survey (1:50000) samples of As, Sb, Bi, Hg by hydride generation-atomic fluorescence spectrometer[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 19-23.

[7]

唐沫岚, 鲍征宇, 范博伦, 等. 顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(4): 408-412.

Tang M L, Bao Z Y, Fan B L, et al. HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2018, 54(4): 408-412.

[8]

赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 254-258.

Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J].Acta Petrologica et Mineralogica, 2019, 38(2): 254-258.

[9]

郭晓瑞, 孙启亮, 张宏丽, 等. 高分辨连续光源原子吸收光谱法测定铀铌铅多金属矿中痕量银[J]. 冶金分析, 2019, 39(9): 1-7.

Guo X R, Sun Q L, Zhang H L, et al. Determination of trace silver in uranium-niobium-lead polymetallic ore by high resolution continuum source flame atomic absorption spectrometry[J].Metallurgical Analysis, 2019, 39(9): 1-7.

[10]

秦晓丽, 田贵, 李朝长, 等. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J]. 岩矿测试, 2019, 38(6): 741-746.

Qin X L, Tian G, Li Z C, et al. Determination of thorium and potassium oxide in geological samples by inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2019, 38(6): 741-746.

[11]

马生凤, 赵文博, 朱云, 等. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试, 2018, 37(6): 650-656.

Ma S F, Zhao W B, Zhu Y, et al. Determination of symbiotic and associated elements in tin ore by ICP-MS combined with pressurized acid digestion and detinning process[J].Rock and Mineral Analysis, 2018, 37(6): 650-656.

[12]

周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J].Rock and Mineral Analysis, 2018, 37(3): 298-305.

[13]

孔智灵, 张新磊, 王蒙, 等. 基于小波变换的铁矿石品位X荧光在线检测方法研究[J]. 光谱学与光谱分析, 2016, 36(10): 415-416.

Kong Z L, Zhang X L, Wang M, et al. Online analysis of iron ore grade using X-ray fluorescence spectrometry based on wavelet transform[J].Spectroscopy and Spectral Analysis, 2016, 36(10): 415-416.

[14]

王佩佩, 李霄, 宋伟娇, 等. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240.

Wang P P, Li X, Song W J, et al. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis, 2016, 35(2): 235-240.

[15]

荆淼, 王其枫, 王艳萍, 等. 电感耦合等离子体质谱法测定土壤中常规元素及稀土元素[J]. 环境化学, 2016, 35(11): 2445-2446.

Jing M, Wang Q F, Wang Y P, et al. Determination of conventional and rare earth elements in soil by inductively coupled plasma mass spectrometry[J].Environmental Chemistry, 2016, 35(11): 2445-2446.

[16]

沈亚婷. EDXRF测定土壤元素含量及其在有机碳垂直分布特征研究中的应用[J]. 光谱学与光谱分析, 2012, 32(11): 3117-3122.

Shen Y T. Determination of major, minor and trace elements in soils by polarized energy X-ray fluorescence spectrometry and the application to vertical distribution characteristics of soil organic carbon[J].Spectroscopy and Spectral Analysis, 2012, 32(11): 3117-3122.

[17]

吉昂,卓尚军,李国会. 能量色散X射线荧光光谱[M] . 北京: 科学出版社, 2011

Ji A,Zhuo S J,Li G H. Energy dispersive X-ray fluorescence spectroscopy[M] . Beijing: Science Press, 2011
[18]

盛成, 卓尚军, 吉昂, 等. 高能偏振能量色散X射线荧光光谱法分析古陶瓷[J]. 理化检验(化学分册), 2012, 48(6): 629-633.

Sheng C, Zhuo S J, Ji A, et al. Application of high energy polarized energy dispersion-XRFS to analysis of ancient ceramics[J].Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2012, 48(6): 629-633.

[19]

吉昂, 郑南, 王河锦, 等. 高能偏振能量色散-X射线荧光光谱法测定PM10大气颗粒物的组成[J]. 岩矿测试, 2011, 30(5): 528-535.

Ji A, Zheng N, Wang H J, et al. Determination of composition in PM10 aerosols by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2011, 30(5): 528-535.

[20]

Özen S A, Özkalaycı F, Çevik U, et al. Investigation of heavy metal distributions along 15m soil profiles using EDXRF, XRD, SEM-EDX, and ICP-MS techniques[J].X-Ray Spectrometry, 2018, 47(3): 1-11.

[21]

Manousakas M, Diapouli E, Papaefthymiou H, et al. XRF characterization and source apportionment of PM10 samples collected in a coastal city[J].X-Ray Spectrometry, 2017, 46(3): 190-200.

[22]

Takeda A, Yamasaki S, Tsukada H, et al. Determination of total contents of bromine, iodine and several trace elements in soil by polarizing energy-dispersive X-ray fluorescence spectrometry[J].Soil Science and Plant Nutrition, 2011, 57(1): 19-28.

[23]

Matsunami H, Matsuda K, Yamasaki S, et al. Rapid simultaneous multi-element determination of soils and environmental samples with polarizing energy dispersive X-ray fluorescence (EDXRF) spectrometry using pressed powder pellets[J].Soil Science & Plant Nutrition, 2010, 56(4): 530-540.

[24]

Koz B. Energy-dispersive X-ray fluorescence analysis of moss and soil from abandoned mining of Pb-Zn ores[J].Environmental Monitoring & Assessment, 2014, 186(9): 5315-5326.

[25]

Cevik U, Koz B, Makarovska Y, et al. Heavy metal analysis around Iskenderun Bay in Turkey[J].X-Ray Spectrometry, 2010, 39(3): 202-207.

[26]

Amaya M A, Grimida S E, Elkekli A R, et al.Geospatial mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban soil, Cd.Juarez, Chihuahua, Mexico[C]//Proceedings of Fall Meeting of American Geophysical Union.2015: GC51G-1170.

[27]

储彬彬, 罗立强. 铅锌矿区土壤重金属的EDXRF分析[J]. 光谱学与光谱分析, 2010, 30(3): 825-828.

Chu B B, Luo L Q. EDXRF analysis of soil heavy metals on lead-zinc orefield[J].Spectroscopy and Spectral Analysis, 2010, 30(3): 825-828.

[28]

Luo L Q, Chu B B, Li Y C, et al. Determination of Pb, As, Cd and trace elements in polluted soils near a lead-zinc mine using polarized X-ray fluorescence spectrometry and the characteristics of the elemental distribution in the area[J].X-Ray Spectrometry, 2012, 41(3): 133-143.

[29]

Gazulla M F, Rodrigo M, Vicente S, et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF)[J].X-Ray Spectrometry, 2010, 39(5): 321-327.

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[5]

修凤凤, 樊勇, 李俊雨, 朱义杰. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素. 岩矿测试, 2018, 37(5): 526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

[6]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[7]

曾江萍, 李小莉, 张楠, 王家松, 魏双, 王娜. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟. 岩矿测试, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

[8]

王龙山, 刘琦, 徐海. X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分. 岩矿测试, 2007, 26(6): 490-492.

[9]

王志刚, 李凤全, 潘虹梅. 灰尘中主次量元素的X射线荧光光谱分析. 岩矿测试, 2008, 27(5): 383-385.

[10]

, 马玖彤, 李滦宁. 丹宁棉分离富集—发射光谱法同时测定地质样品中微量铌钽锆铪. 岩矿测试, 2001, (1): 27-30.

[11]

李刚, 张哲玮, 潘淑春. 碱性模式氢化发生原子荧光光谱法测定地质样品中痕量锗. 岩矿测试, 2004, (4): 295-299.

[12]

刘江斌, 赵峰, 余宇, 党亮, 张旺强, 陈月源. X射线荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素. 岩矿测试, 2010, 29(1): 74-76.

[13]

邹海峰, 苏克. X射线荧光光谱法直接测定地质样品中多种痕量元素. 岩矿测试, 1998, (3): 207-210.

[14]

王烨, 赵淑杰, 李滦宁. 发射光谱载体蒸馏法测定地质样品中微量硼铍锡银. 岩矿测试, 2004, (1): 30-32.

[15]

张勤, 詹秀春, . 地质样品痕量氯溴和硫的X射线荧光光谱法测定. 岩矿测试, 2002, (1): 12-18.

[16]

吴少蔚, , 刘汉东. 掺氧空气—乙炔火焰原子吸收光谱法测定地质样品中微量钡. 岩矿测试, 2002, (3): 187-189.

[17]

林光西, 周泳德, 周康明. 泡沫塑料富集-石墨炉原子吸收光谱法测定地质样品中微量铊. 岩矿测试, 2006, 25(4): 377-380.

[18]

李冰, 王蕾, 何红蓼. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2003, (2): 86-92.

[19]

侯书恩, 常诚. 探针原子化石墨炉原子吸收法直接测定地质样品中的微量铋. 岩矿测试, 1989, (1): 4-8.

[20]

马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247.

计量
  • PDF下载量(34)
  • 文章访问量(612)
  • HTML全文浏览量(111)
  • 被引次数(0)
目录

Figures And Tables

高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析

袁静, 刘建坤, 郑荣华, 沈加林