【引用本文】 张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005
ZHANG Ya, LI Quan-zhong, YAN Jun, et al. Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649. doi: 10.15898/j.cnki.11-2131/td.202101130005

LA-ICP-MS独居石U-Th-Pb测年方法研究

合肥工业大学资源与环境工程学院, 安徽 合肥 230009

收稿日期: 2021-01-13  修回日期: 2021-04-15  接受日期: 2021-08-28

基金项目: 国家自然科学基金青年基金项目(40903013);国家自然科学基金项目(42030801)

作者简介: 张雅, 硕士, 地球化学方向。E-mail: 1357009821@qq.com

通信作者: 李全忠, 博士, 副教授, 从事地球化学及地质年代学研究。E-mail: liqzhong@hfut.edu.cn

Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Corresponding author: LI Quan-zhong, liqzhong@hfut.edu.cn

Received Date: 2021-01-13
Revised Date: 2021-04-15
Accepted Date: 2021-08-28

摘要:相比LA-ICP-MS锆石U-Pb测年,独居石在一些年轻地质体或流体作用下的矿物定年中更具优势,具有很好的应用前景。然而,大多数独居石Th含量较高(可达7%),包裹体较多,另外随着独居石定年标样不断消耗,存量越来越少,也限制了独居石U-Th-Pb同位素测年的发展与应用。前人利用LA-ICP-MS探究合适的独居石U-Th-Pb测年实验条件,主要是改变激光器的参数,而未对ICP-MS的参数进行系统研究。本文通过改变激光器参数(束斑直径和激光频率)和ICP-MS参数(232Th驻留时间),分别在束斑直径为24μm、16μm和10μm,激光频率为3Hz、4Hz和5Hz,232Th驻留时间为10ms、6ms、3ms和1ms的条件下进行U-Th-Pb测年。最后以独居石RW-1为标样,对独居石样品Bananeira进行校正,期望得到独居石U-Th-Pb测年的最佳条件。结果表明:束斑直径为16μm,232Th驻留时间为3ms或1ms,能量密度为4J/cm2,激光频率为5Hz,载气He流速为0.35L/min,载气Ar流速为0.95L/min的实验条件下适合独居石测年,这两种条件下Bananeira的207Pb/235U加权平均年龄分别为510.7±8.6Ma(MSWD=0.87)、513.8±5.7Ma(MSWD=0.38,推荐值507.7±1.3Ma),误差在0.59%和1.20%左右;208Pb/232Th加权平均年龄分别为496.9±8.6Ma(MSWD=0.596)、499.8±5.6Ma(MSWD=0.37,推荐值497.6±1.6Ma),误差在0.14%和0.44%左右。并利用此条件对黄山花岗岩(HS-1)进行独居石U-Th-Pb测年,其207Pb/235U加权平均值在128.3±2.4Ma(MSWD=0.73),与本次测定该岩体的锆石年龄数据(127.0±2.1Ma,MSWD=0.93)在误差范围内一致,验证了本实验建立的独居石U-Th-Pb定年方法可靠。

关键词: LA-ICP-MS, 独居石U-Th-Pb测年, 激光束斑, 232Th驻留时间

要点

(1) 针对独居石的性质,从激光频率、束斑直径、232Th驻留时间三方面探寻最佳测年条件。

(2) 得到激光束斑直径为16μm、频率为5Hz,232Th驻留时间为3ms或1ms的最佳条件。

(3) 对黄山花岗岩样品进行独居石测年,其年龄结果与所测锆石年龄一致,验证了测年条件。

Analytical Conditions for U-Th-Pb Dating of Monazite by LA-ICP-MS

ABSTRACT

BACKGROUND:

Compared with zircon U-Pb dating, monazite has more advantages in the dating of some metamorphic rocks or highly differentiated rocks. However, the U-Th-Pb isotopic dating of monazite has been limited, because of high Th concentration (commonly>7%), many mineral inclusions, and rare dating standard samples. Previous research on LA-ICP-MS U-Th-Pb dating of monazite mainly focused on laser parameters, and lacked attention on ICP-MS conditions.

OBJECTIVES:

To find suitable experimental LA-ICP-MS monazite dating conditions.

METHODS:

Using 193nm ArF excimer laser ablation system and Agilent 7500a inductively coupled plasma-mass spectrometer, laser parameters (laser beam spot diameter and laser frequency) and ICP-MS parameters(dwelling time of 232Th) were investigated. The laser beam spot diameter was set to 24μm, 16μm and 10μm, and the laser frequency was set to 3Hz, 4Hz and 5Hz. The dwelling time of 232Th was set to 10ms, 6ms, 3ms and 1ms for U-Th-Pb dating. Finally, the monazite sample RW-1 was used as the standard sample to calibrate the monazite sample Bananeira.

RESULTS:

It was suitable for monazite dating when the beam spot diameter was 16μm, the dwelling time of 232Th was 3ms or 1ms, the energy density was 4J/cm2, the laser frequency was 5Hz, the carrier gas (He) flow rate was 0.35L/min, and the carrier gas (Ar) flow rate was 0.95L/min. Under these conditions, Bananeira's weighted average ages of 207Pb/235U were 510.7±8.6Ma (MSWD=0.87), and 513.8±5.7Ma (MSWD=0.38), which were consistent with the recommended age of 507.7±1.3Ma with respective errors of 0.59% and 1.20%. 208Pb/232Th weighted average ages were 496.9±8.6Ma (MSWD=0.596) and 499.8±5.6Ma (MSWD=0.37), which were consistent with the recommended age of 497.6±1.6Ma, with respective errors of 0.14% and 0.44%. The 207Pb/235U weighted average age of Huangshan sample HS-1 was 128.3±2.4Ma (MSWD=0.73), which were close to the zircon age of 127.0±2.1Ma (MSWD=0.93) in the Huangshan area.

CONCLUSIONS:

The optimal laser and ICP-MS conditions are suitable for monazite U-Th-Pb isotopic age determination.

KEY WORDS: LA-ICP-MS, monazite U-Th-Pb isotopic dating, laser spot, dwelling time of 232Th

HIGHLIGHTS

(1) According to the properties of monazite, the best dating conditions were explored from three aspects: laser frequency, beam spot diameter and dwelling time of 232Th.

(2) The optimum conditions were the laser spot diameter of 16μm, the frequency of 5Hz, and the 232Th dwelling time of 3ms or 1ms.

(3) The monazite age of Huangshan granite samples was consistent with the zircon age, which verified the dating conditions.

本文参考文献

[1]

Williams M L, Jercinovic M J, Hetherington C J, et al. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J].Annual Review of Earth and Planetary Sciences, 2007, 35(1): 137-175. doi: 10.1146/annurev.earth.35.031306.140228

[2]

Chiaradia M, Schaltegger U, Spikings R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?-An invited paper[J].Economic Geology and the Bulletin of the Society of Economic Geologists, 2013, 108(4): 565-584. doi: 10.2113/econgeo.108.4.565

[3]

Wu Y B, Wang H, Gao S, et al. LA-ICP-MS monazite U-Pb age and trace element constraints on the granulite-facies metamorphism in the Tongbai Orogen, central China[J].Journal of Asian Earth Sciences, 2014, 82: 90-102. doi: 10.1016/j.jseaes.2013.12.016

[4]

Hogdahl K, Majka J, Sjostrom H, et al. Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: Implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden[J].Contributions to Mineralogy and Petrology, 2012, 163(1): 167-188. doi: 10.1007/s00410-011-0664-x

[5]

吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 1077-1094, 1064, 1066.

Wu L G, Li X H. Isotopic and elemental analysis of monazite and its geological application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1077-1094, 1064, 1066.

[6]

Meldrum A, Boatner L A, Weber W J, et al. Radiation damage in zircon and monazite[J].Geochimica Et Cosmochimica Acta, 1998, 62(14): 2509-2520. doi: 10.1016/S0016-7037(98)00174-4

[7]

Liu X C, Wu F Y, Yu L J, et al. Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J].Tectonophysics, 2016, 667: 163-175. doi: 10.1016/j.tecto.2015.12.001

[8]

胡国辉, 周艳艳, 张拴宏, 等. 吕梁地区古元古代花岗片麻岩成因及变质时代: 锆石和独居石U-Pb年龄及锆石Hf同位素证据[J]. 岩石学报, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05

Hu G H, Zhou Y Y, Zhang S H, et al. Petrogenesis and metamorphic age of Palaeoproterozoic granitic gneisses in Lüliang area: Constraints from zircon and monazite U-Pb ages and Hf isotopes[J].Acta Petrologica Sinica, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05

[9]

Barnes C, Majka J, Schneider D, et al. High-spatial re-solution dating of monazite and zircon reveals the timing of subduction-exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides)[J].Contributions to Mineralogy and Petrology, 2019, 174(1): 5. doi: 10.1007/s00410-018-1539-1

[10]

Skipton D R, Schneider D A, Mcfarlane C, et al. Multi-stage zircon and monazite growth revealed by depth profiling and in situ U-Pb geochronology: Resolving the Paleoproterozoic tectonics of the Trans-Hudson Orogen on southeastern Baffin Island, Canada[J].Precambrian Research, 2016, 285: 272-298. doi: 10.1016/j.precamres.2016.09.002

[11]

王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

Wang J D, Li Z D, Zhang Q, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J].Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

[12]

Lehmann B, Zoheir B A, Neymark L A, et al. Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield[J].Gondwana Research, 2020, 84: 71-80. doi: 10.1016/j.gr.2020.03.001

[13]

Yan T, Liu D, Si C, et al. Coupled U-Pb geochronology of monazite and zircon for the Bozhushan batholith, southeast Yunnan Province, China: Implications for regional metallogeny[J].Minerals, 2020, 10(3): 239-253. doi: 10.3390/min10030239

[14]

Martial F T, Rigobert T, Anne S A, et al. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah Leucogranite (northern Cameroon): Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite[J]. Minerals, 2018, 8(5): 2-36.

[15]

Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICP-MS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J].Geochimica Et Cosmochimica Acta, 1996, 60(24): 5063-5073. doi: 10.1016/S0016-7037(96)00287-6

[16]

Paquette J L, Tiepolo M. High resolution (5μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J].Chemical Geology, 2007, 240(3-4): 222-237. doi: 10.1016/j.chemgeo.2007.02.014

[17]

王倩, 侯可军. 独居石LA-ICP-MS微区原位U-Pb同位素年龄测定[J]. 地质学报, 2015, 89(10): 41-43.

Wang Q, Hou K J. LA-ICP-MS in situ U-Pb isotopic dating of monazite[J]. Acta Geologica Sinica, 2015, 89(10): 41-43.

[18]

汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-367.

Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-367.

[19]

洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

Hong W X, Zhu X K. Study on the composition distribution of monazite particles[J].Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

[20]

Richter M, Nebel-Jacobsen Y, Nebel O, et al. Assess-ment of five monazite reference materials for U-Th/Pb dating using laser-ablation ICP-MS[J].Geosciences, 2019, 9(9): 391-412. doi: 10.3390/geosciences9090391

[21]

Kohn M J, Vervoort J D. U-Th-Pb dating of monazite by single collector ICP-MS: Pitfalls and potential[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): 1-16.

[22]

Gilbert S, Olin P, Thompson J, et al. Matrix dependency for oxide production rates by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2017, 32(3): 638-646. doi: 10.1039/C6JA00395H

[23]

崔玉荣, 周红英, 耿建珍, 等. LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定[J]. 地球学报, 2012, 33(6): 865-876.

Cui Y R, Zhou H Y, Geng J Z, et al. In situ LA-MC-ICP-MS U-Pb isotopic dating of monazite[J]. Acta Geoscientica Sinica, 2012, 33(6): 865-876.

[24]

Ling, Magdalena, Huyskens, et al. Monazite RW-1:A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis[J].Mineral Petrology, 2017, 111(2): 163-172. doi: 10.1007/s00710-016-0478-7

[25]

Gonçalves O G, Lana C, Scholz R, et al. An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J].Chemical Geology, 2016, 424: 30-50. doi: 10.1016/j.chemgeo.2015.12.019

[26]

Kylander-Clark A, Hacker B R, Cottle J M, et al. Laser-ablation split-stream ICP petrochronology[J].Chemical Geology, 2013, 345: 99-112. doi: 10.1016/j.chemgeo.2013.02.019

[27]

Xue H M, Wang Y G, Ma F, et al. Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusion: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton, China[J].Science in China, 2009, 52(11): 1756-1770. doi: 10.1007/s11430-009-0133-9

[28]

Wu F Y, Ji W Q, Sun D H, et al. Zircon U-Pb geo-chronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J].Lithos, 2012, 150: 6-25. doi: 10.1016/j.lithos.2012.03.020

[29]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[30]

Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petroleum Science and Engineering, 2010, 51(1-2): 537-571.

[31]

Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

[32]

吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36.

Wu F Y, Liu Z C, Liu X C, et al. Himalayan leucogranite[J]. Acta Petrologica Sinica, 2015, 31(1): 1-36.

[33]

Susanne B, Felix O, Martin M, et al. Th-Pb versus U-Pb isotope systematics in allanite from cogenetic rhyolite and granodiorite: Implications for geochronology[J]. Earth & Planetary Science Letters, 1994, 124(1-4): 149-159.

[34]

Grand'Homme A, Janots E, Bosse V, et al. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): Evidence from a large-scale regional study in clefts from the western Alps[J].Mineralogy & Petrology, 2016, 110(6): 787-807. doi: 10.1007/s00710-016-0451-5

[35]

周红升, 马昌前, 张超, 等. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类: 年代学、地球化学及其启示[J]. 岩石学报, 2008, 24(1): 49-64.

Zhou H S, Ma C Q, Zhang C, et al. Yanshanian alnminons A-type granitoids in the Chunshui of Biyang, south margin of North China Craton: Implications from petrology, geochronology and geochemistry[J]. Acta Petrologica Sinica, 2008, 24(1): 49-64.

[36]

张舒, 张招崇, 艾羽, 等. 安徽黄山花岗岩岩石学、矿物学及地球化学研究[J]. 岩石学报, 2009, 25(1): 25-38.

Zhang S, Zhang Z C, Ai Y, et al. The petrology, mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J]. Acta Petrologica Sinica, 2009, 25(1): 25-38.

[37]

薛怀民, 汪应庚, 马芳, 等. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?[J]. 地质学报, 2009, 83(2): 247-259.

Xue H M, Wang Y G, Ma F, et al. The Huangshan A-type granites with tetrad REE: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton?[J]. Acta Geologica Sinica, 2009, 83(2): 247-259.

[38]

Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5): 602-622.

相似文献(共20条)

[1]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[2]

王辉, 汪方跃, 关炳庭, 盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

[3]

靳梦琪, 李艳广, 王鹏, 汪双双, 黎卫亮. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 2020, 39(2): 274-284. doi: 10.15898/j.cnki.11-2131/td.201908120124

[4]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[5]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[6]

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

[7]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[8]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[9]

胡志中, 李佩, 蒋璐蔓, 王通洋, 杜谷, 杨波. 古代玻璃材料LA-ICP-MS组分分析及产源研究. 岩矿测试, 2020, 39(4): 505-514. doi: 10.15898/j.cnki.11-2131/td.201909210134

[10]

李阳, 邹灏, 刘行, 蒋修未, 李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141

[11]

王忠强, 李超, 江小均, 周利敏, 赵九江, 严清高, 李亚东, 陈耀坤. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示. 岩矿测试, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118

[12]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[13]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[14]

黄新鹏. 福建霞浦大湾钼铍矿区碱长花岗岩LA-ICP-MS锆石U-Pb测年研究. 岩矿测试, 2018, 37(5): 572-579. doi: 10.15898/j.cnki.11-2131/td.201710160165

[15]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[16]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

[17]

王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 2015, 34(5): 592-599. doi: 10.15898/j.cnki.11-2131/td.2015.05.016

[18]

万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 岩矿测试, 2015, 34(4): 494-502. doi: 10.15898/j.cnki.11-2131/td.2015.04.019

[19]

赵希林, 余明刚, 姜杨, 李亚楠, 靳国栋, 陈志洪, 邢光福. LA-ICP-MS锆石U-Pb同位素定年:对闽北地区稻香组形成时代的制约. 岩矿测试, 2014, 33(6): 892-899.

[20]

赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 王守光, 刘利双, 赵丽君. 内蒙古黄花滩铜镍矿区辉长岩LA-ICP-MS锆石U-Pb定年及地球化学特征. 岩矿测试, 2016, 35(2): 208-216. doi: 10.15898/j.cnki.11-2131/td.2016.02.014

计量
  • PDF下载量(33)
  • 文章访问量(2847)
  • HTML全文浏览量(774)
  • 被引次数(0)
目录

Figures And Tables

LA-ICP-MS独居石U-Th-Pb测年方法研究

张雅, 李全忠, 闫峻, 谢建成, 杨青亮, 高玲