【引用本文】 于海燕, 阮青锋, 沙鑫, 等. 应用元素分析-电子顺磁共振能谱研究不同颜色青海软玉致色元素[J]. 岩矿测试, 2019, 38(3): 288-296. doi: 10.15898/j.cnki.11-2131/td.201805140130
YU Hai-yan, RUAN Qing-feng, SHA Xin, et al. Study on Color-causing Elements in Qinghai Nephrite by Elemental Analysis and Electron Paramagnetic Resonance Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(3): 288-296. doi: 10.15898/j.cnki.11-2131/td.201805140130

应用元素分析-电子顺磁共振能谱研究不同颜色青海软玉致色元素

1. 

桂林理工大学地球科学学院, 广西 桂林 541004

2. 

广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004

收稿日期: 2018-05-14  修回日期: 2018-07-23  接受日期: 2019-04-09

基金项目: 广西自然科学基金项目(2015GXNSFBA1391);桂林理工大学博士科研启动经费(002401003554);广西隐伏金属矿产勘查重点实验室项目

作者简介: 于海燕, 博士, 讲师, 宝石矿物学。E-mail:575976579@qq.com

Study on Color-causing Elements in Qinghai Nephrite by Elemental Analysis and Electron Paramagnetic Resonance Spectroscopy

1. 

College of Earth Sciences, Guilin University of Technology, Guilin 541004, China

2. 

Guangxi Key Laboratory of Hidden Metallic Deposits Exploration, Guilin 541004, China

Received Date: 2018-05-14
Revised Date: 2018-07-23
Accepted Date: 2019-04-09

摘要:颜色是软玉价值的重要体现,青海软玉颜色丰富,而致色方面的研究较为滞后。近年来青海软玉致色研究多为翠青玉和烟青玉,认为Cr3+和Mn2+分别为翠青玉和烟青玉致色元素。青海软玉的颜色非单一色彩,如青白色、翠绿色、灰紫色等,因此青海软玉致色应包含多种致色元素。本文在前人研究的基础上,利用X射线荧光光谱法(XRF)、化学滴定法、电感耦合等离子体质谱法(ICP-MS)和电子顺磁共振能谱(EPR)测试数据,根据分析数据与色调变化之间的关系揭示了8种颜色青海软玉的致色元素。结果表明:白玉致色元素为Fe3+;青白玉和碧玉致色元素为Fe2+和Fe3+;青玉致色元素为Fe2+、Fe3+和高价态的Mn;翠青玉致色元素为Fe2+、Fe3+、Cr3+;黄玉和糖玉致色元素为Fe3+和高价态的Mn;烟青玉致色元素为Fe3+和Ti4+。研究认为青海软玉中绿色调与Fe2+有关,黄色调与Fe3+和高价态的Mn有关,而蓝紫色调与Fe3+和Ti4+有关。本研究基本确定了不同颜色青海软玉的致色元素,为青海软玉致色机制的研究提供了理论依据。

关键词: 青海软玉, 电子顺磁, 致色元素,

要点

(1) 通过青海软玉中Fe2+和Fe3+含量与色调之间的关系阐明对致色的影响。

(2) 利用ICP-MS数据与色调之间的关系,说明与致色有关的过渡性金属元素。

(3) 根据EPR分析数据,揭示翠青玉中致色元素Cr为Cr3+,晶体位置为M1M3

(4) 液氮低温下未发现Ti3+的EPR谱线,说明与致色有关的Ti元素主要为Ti4+

Study on Color-causing Elements in Qinghai Nephrite by Elemental Analysis and Electron Paramagnetic Resonance Spectroscopy

ABSTRACT

BACKGROUND:

Color is the important manifestation of nephrite value. Qinghai nephrite has different colors, but there is a lack of research on coloration. In recent years, the study on the coloration of nephrite in Qinghai mainly focused on azure-green and blue-violet, and it was considered that Cr3+ and Mn2+ were respective coloration elements of azure-green and blue-violet. The color of Qinghai nephrite is not a simple color, such as white-green, azure-green, and blue-violet. Therefore, Qinghai nephrite should contain a variety of color-causing elements.

OBJECTIVES:

To reveal the color-causing elements of eight colors of nephrite from Qinghai based on the relationship between analysis data and hue changes.

METHODS:

X-ray Fluorescence Spectrometry (XRF), Chemical Titration, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Electron Paramagnetic Resonance Spectroscopy (EPR) were used to study the color-causing elements of nephrite.

RESULTS:

The color-causing element of white Qinghai nephrite was Fe3+. The color-causing elements of white-green and azure-green Qinghai nephrite were Fe2+ and Fe3+, respectively. The chromogenic elements of green Qinghai nephrite were Fe2+, Fe3+ and Mn in high valence. The color-causing elements of azure-green Qinghai nephrite were Fe2+, Fe3+ and Cr3+. The chromogenic elements of yellow and brown Qinghai nephrite were Fe3+ and high-valence Mn. Fe3+ and Ti4+ were the color-causing elements of blue-purple Qinghai nephrite.

CONCLUSIONS:

This study determined the color-causing elements of different colors of Qinghai nephrite, which provided a theoretical basis for the study of the coloration mechanism of Qinghai nephrite.

KEY WORDS: Qinghai nephrite, Electron Paramagnetic Resonance, color-causing elements, Fe

HIGHLIGHTS

(1) The relationship of Fe2+ and Fe3+ contents with hue in Qinghai nephrite indicated the effect on color-inducing.

(2) The relationship between ICP-MS data and tone was used to illustrate the transitional metal elements related to color.

(3) EPR data indicated that Cr of the chromogenic element in azure-green Qinghai nephrite was Cr3+ and the crystal position was M1 or M3.

(4) Ti3+ EPR spectral line was not found at low temperature liquid state, indicating that Ti element related to color formation was Ti4+.

本文参考文献

[1]

李雯雯, 吴瑞华. 和田玉的颜色及其色度学研究[J]. 矿物岩石地球化学通报, 1999, 18(4): 418-422.

Li W W, Wu R H. The colorimetry and chromaticity study of Xinjiang Hetian jade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(4): 418-422.

[2]

那宝成, 冷莹莹, 李祥虎, 等. 软玉致色元素的研究[J]. 超硬材料工程, 2008, 20(3): 55-58. doi: 10.3969/j.issn.1673-1433.2008.03.014

Na B C, Leng Y Y, Li X H, et al. Research on coloring element of nephrite[J].Uperhard Material Engineering, 2008, 20(3): 55-58. doi: 10.3969/j.issn.1673-1433.2008.03.014

[3]

Wang Y Y, Gan F X. Coloration mechanism and chromaticity of Xiuyan jade of China[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2305-2310.

[4]

冯晓燕, 陆太进, 张辉, 等. 拉曼光谱分析在软玉颜色评价中的应用[J]. 矿物岩石, 2015, 35(1): 1-6. doi: 10.3969/j.issn.1007-2802.2015.01.001

Feng X Y, Lu T J, Zhang H, et al. Application of Raman spectroscopic technique to investigation on nephrite color[J].Journal of Mineralogy and Petrology, 2015, 35(1): 1-6. doi: 10.3969/j.issn.1007-2802.2015.01.001

[5]

韩文, 洪汉烈, 吴钰, 等. 和田玉糖玉的致色机理研究[J]. 光谱学与光谱分析, 2013, 33(6): 1446-1450. doi: 10.3964/j.issn.1000-0593(2013)06-1446-05

Han W, Hong H L, Wu Y, et al. Color genesis of brown jade from Hetian nephrite[J].Spectroscopy and Spectral Analysis, 2013, 33(6): 1446-1450. doi: 10.3964/j.issn.1000-0593(2013)06-1446-05

[6]

周征宇, 陈盈, 廖宗廷, 等. 溧阳软玉的岩石矿物学研究[J]. 岩石矿物学杂志, 2009, 28(5): 490-494. doi: 10.3969/j.issn.1000-6524.2009.05.010

Zhou Z Y, Chen Y, Liao Z T, et al. A petrological and mineralogical study of Liyang nephrite[J].Acta Petrologica et Mineralogica, 2009, 28(5): 490-494. doi: 10.3969/j.issn.1000-6524.2009.05.010

[7]

卢保奇.四川石棉软玉猫眼和蛇纹石猫眼的宝石矿物学及其谱学研究[D].上海: 上海大学, 2005.

Lu B Q.The Gemological Mineralogy and Spectroscopy of Nephrite Cat's Eye and Serpentine Cat's Eye from Shimian, Sichuan Province, Southwest of China[D]: Shanghai: Shanghai University, 2005.

[8]

杨林.贵州罗甸玉矿物岩石学特征及成因机理研究[D].成都: 成都理工大学, 2013.

Yang L.Study on Petro-mineral Features and Genetic Mechanism of Luodian Jade, Guizhou Province[D].Chengdu: Chengdu University of Technology, 2013.

[9]

刘虹靓, 杨明星, 杨天翔, 等. 青海翠青玉的宝石学特征及颜色研究[J]. 宝石和宝石学杂志, 2013, 15(1): 7-14. doi: 10.3969/j.issn.1008-214X.2013.01.002

Liu H L, Yang M X, Yang T X, et al. Study on colour and gemological characteristics of viridis nephrite from Qinghai Province[J].Journal of Gems & Gemmology, 2013, 15(1): 7-14. doi: 10.3969/j.issn.1008-214X.2013.01.002

[10]

罗泽敏, 沈锡田, 杨明星, 等. 青海三岔河灰紫色软玉颜色定量表达与紫色成因研究[J]. 光谱学与光谱分析, 2017, 37(3): 822-828.

Luo Z M, Shen X T, Yang M X, et al. Study on color quantitative expression, replication and color origin of gray-purple nephrite from Qinghai, China based on spectroscopy methods[J]. Pectroscopy and Spectral Analysis, 2017, 37(3): 822-828.

[11]

Manoogian A. The electron spin resonance of Mn2+ in tremolite[J]. Canadian Journal of Physics, 2011, 46(2): 129-133.

[12]

Manoogian A. Intensity of allowed and forbidden electron spin resonance lines of Mn2+ in tremolite[J]. Canadian Journal of Physics, 2011, 46(9): 1029-1033.

[13]

Mcgavin D G, Palmer R A, Tennant W C, et al. Use of ultrasonically modulated electron resonance to study S-state ions in mineral crystals:Mn2+, Fe3+in tremolite[J]. Physics & Chemistry of Minerals, 1982, 8(5): 200-205.

[14]

Vinokurov V M, Zaripov M M, Stepanov V G, et al. Paramagnetic resonance of Mn2+ions in diopside[J]. Solid State Communications, 1964, 2(5): Ⅲ-Ⅳ.

[15]

Pan Y, Nilges M J. Electron paramagnetic resonance spectroscopy:Basic principles, experimental techniques and applications to earth and planetary sciences[J]. Reviews in Mineralogy & Geochemistry, 2014, 78(1): 655-690.

[16]

Vasyukov V N, Shapovalov V V, Schwarz S A, et al. Temperature-induced changes in the EPR spectrum of the magnetic center in kaolin[J]. Journal of Magnetic Resonance, 2002, 154(1): 15-21.

[17]

Pan Y, Mao M, Lin J, et al. Single-crystal EPR study of Fe3+ and VO2+ in prehnite from the Jeffrey mine, Asbestos, Quebec[J].Canadian Mineralogist, 2009, 47(4): 933-945. doi: 10.3749/canmin.47.4.933

[18]

Balan E. Structural Fe3+ in natural kaolinites:New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies[J]. Clays & Clay Minerals, 1999, 47(5): 605-616.

[19]

Gaite J M, Izotov V V, Nikitin S I, et al. EPR and optical spectroscopy of impurities in two synthetic beryls[J].Applied Magnetic Resonance, 2001, 20(3): 307-315. doi: 10.1007/BF03162283

[20]

Ollier N, Fuchs Y, Cavani O, et al. Influence of impurities on Cr3+ luminescence properties in Brazilian emerald and alexandrite[J].European Journal of Mineralogy, 2015, 27(6): 783-792. doi: 10.1127/ejm/2015/0027-2484

[21]

Zheng W C, Zhou Q, Wu X X, et al. Theoretical investigations of the EPR parameters of Ti3+ in beryl crystal[J]. Zeitschrift Für Naturforschung A, 2006, 61(5-6): 286-288.

[22]

Yuan Z, Wu X X, Lü H, et al. EPR parameters and defect structures of the off-center Ti3+ ion on the Sr2+ site in neutron-irradiated SrTiO3 crystal[J]. Journal of Physics & Chemistry of Solids, 2007, 68(9): 1652-1655.

[23]

赵敏光. 晶体场和电子顺磁共振理论[M] . 北京: 科学出版社, 1991: 204-216.

Zhao M G. Theory on Crystal Field and Electron Paramagnetic Resonance[M] . Beijing: Science Press, 1991: 204-216.

相似文献(共20条)

[1]

廖宗廷, 周征宇, 李玉加, 陈盈, 马婷婷. 青海软玉的岩石矿物学特征. 岩矿测试, 2008, 27(1): 17-20.

[2]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[3]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

洪翊, 李鉴伦, 何平, 冯超, 李锡坤. 酸性土壤中20种元素有效态浸提体系浅析. 岩矿测试, 2001, (3): 167-173.

[6]

戚文玲, 王秀季, 盛绍基, 杨艳秋, 靳兰兰, 李小红, 谈建文. 野外现场多元素快速分析方法的研究和应用—Ⅱ·铜铁锌的测定. 岩矿测试, 2002, (4): 259-265.

[7]

李景文. 电感耦合等离子体发射光谱法测定铅锑合金中锑砷铋锡锌铁. 岩矿测试, 2010, 29(2): 185-186.

[8]

马新荣, 王蕾, 温宏利, 巩爱华. 电感耦合等离子体光谱法测定黄铁矿和黄铜矿中的铁铜硫. 岩矿测试, 2011, 30(6): 756-760.

[9]

王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁. 岩矿测试, 2012, 31(3): 442-445.

[10]

杨载明. 二次熔矿方式电感耦合等离子体发射光谱法测定棕刚玉中硅铁钛钙镁锆. 岩矿测试, 2012, 31(4): 617-620.

[11]

刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896.

[12]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[13]

吴迎春, 岳宇超, 聂峰. 电感耦合等离子体发射光谱法测定磷矿石中磷镁铝铁. 岩矿测试, 2014, 33(4): 497-500.

[14]

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁. 岩矿测试, 2014, 33(4): 545-550.

[15]

熊采华, 陈超英, 汪康康, 董高翔. 小体积萃取-石墨炉原子吸收法测定高纯硝酸钡中纳克级重金属元素. 岩矿测试, 1991, (4): 287-290.

[16]

赵书林, 夏心泉. 混合显色体系同时测定铁和钛. 岩矿测试, 1991, (1): 35-.

[17]

侯小琳. 铁基样品中锰的中子活化法测定. 岩矿测试, 1996, (3): 188-191.

[18]

朱果逸, 周延秀. 痕量铁和锰的化学发光检测. 岩矿测试, 1997, (3): 221-228.

[19]

马毅红, 李钟平, 尹艺青. 离子液体[Emim]PF6-邻二氮菲超声萃取铁尾矿中的铁. 岩矿测试, 2013, 32(3): 456-461.

[20]

张旺强, 王春妍, 李瑞仙, 巨力佩, 陈月源, 余志峰, 毛振才. 电感耦合等离子体发射光谱法测定富镁铁橄榄岩类矿石中铜镍铁和氧化镁. 岩矿测试, 2011, 30(2): 195-199.

计量
  • PDF下载量(16)
  • 文章访问量(150)
  • HTML全文浏览量(56)
  • 被引次数(0)
目录

Figures And Tables

应用元素分析-电子顺磁共振能谱研究不同颜色青海软玉致色元素

于海燕, 阮青锋, 沙鑫, 杨育富