【引用本文】 李凤嫣, 蒋天宇, 余涛, 等. 环境中氟的来源及健康风险评估研究进展[J]. 岩矿测试, 2021, 40(6): 793-807. doi: 10.15898/j.cnki.11-2131/td.202109290133
LI Feng-yan, JIANG Tian-yu, YU Tao, et al. Review on Sources of Fluorine in the Environment and Health Risk Assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793-807. doi: 10.15898/j.cnki.11-2131/td.202109290133

环境中氟的来源及健康风险评估研究进展

1. 

中国地质大学(北京)数理学院, 北京 100083

2. 

自然资源部生态地球化学重点实验室, 北京 100037

3. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

收稿日期: 2021-09-29  修回日期: 2021-11-04  接受日期: 2021-11-12

基金项目: 中国地质调查局地质调查项目(DD20211414);科技部重点研发计划项目(2017YFD0800304);中国地质大学(北京)地质调查成果转化基金(202001)

作者简介: 李凤嫣, 硕士研究生, 材料与化工专业, 主要从事地球化学健康风险评估方面的研究。E-mail: leefy@cugb.edu.cn

通信作者: 余涛, 博士, 副研究员, 硕士生导师, 主要从事环境化学、生态地球化学的教学与科研。E-mail: yutao@cugb.edu.cn

Review on Sources of Fluorine in the Environment and Health Risk Assessment

1. 

School of Science, China University of Geosciences, Beijing 100083, China

2. 

Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, China

3. 

School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

Corresponding author: YU Tao, yutao@cugb.edu.cn

Received Date: 2021-09-29
Revised Date: 2021-11-04
Accepted Date: 2021-11-12

摘要:氟是存在于自然环境中的一种人体必需的微量元素,其在环境中的缺乏或过剩可能导致健康问题。本文综述了氟在自然界如大气、岩石、土壤、水体、植物中的来源,分析了其形态及含量受环境影响的因素如地形、雨水淋溶、土壤母质、土壤酸碱度、土壤有机质等。氟的来源广泛,目前全球超过2.6亿人受氟带来的环境问题影响,因此开展健康风险评估具有重要意义。氟的健康风险评估常用的风险评估模型有危害系数(Hazard Quotient)、危害指数(Hazard Index),概率方法也常运用于风险分析中,目前还出现应用多途径暴露评估法对氟进行评估,不确定性和灵敏度的研究对于评估模型尤为关键。本文比较了传统模型的可行性和局限性,认为确定氟富集的途径,完善复合暴露评估的模式,考虑氟摄入的生物有效性,对于氟的健康风险评估十分必要;氟的健康风险评估下一步的研究还可以趋向于使用模型对氟的风险进行预测;对于氟的来源、赋存状态、迁移途径以及含量影响因素等仍然需要深入了解,全面评估其带来的健康风险。

关键词: , 大气, 岩石, 土壤, 水体, 影响因素, 健康风险评估

要点

(1) 氟元素因地球化学行为分布不均,引起健康问题的氟主要为自然来源造成。

(2) 土壤中氟含量受成土母质、土壤理化性质和地貌条件等影响。

(3) 氟的健康风险评估模型的综合运用及模型预测风险是研究趋势。

Review on Sources of Fluorine in the Environment and Health Risk Assessment

ABSTRACT

BACKGROUND:

Fluorine is an essential trace element that exists in the natural environment, and its deficiency or excess in the environment can cause health problems.

OBJECTIVES:

To summarize the research progress of sources of fluorine in the environment and to assess the risk to health.

METHODS:

The sources of fluorine in the natural atmosphere, rocks, soils, water, and plants, were reviewed, and the factors affecting its form and content by the environment were analyzed, such as topography, rain leaching, soil parent material, soil pH, soil organic matter and geochemical behavior.

RESULTS:

Fluorine has a wide range of sources. At present, more than 260 million people in the world have been affected by environmental problems caused by fluorine. Therefore, it is of great significance to carry out a health risk assessment. The common health risk assessment models of fluorine include Hazard Quotient and Hazard Index. Probabilistic methods are often used in risk analysis. At present, there are also applications of multi-channel exposure assessment methods to assess fluorine. The feasibility and limitations of traditional models were compared.

CONCLUSIONS:

It is necessary to consider the uncertainty and sensitivity of the health risk assessment models, determine the fluorine enrichment pathway, improve the combined exposure assessment models, and consider the bioavailability of fluorine intake for health risk assessment of fluorine. The next step of research on health risk assessment of fluorine can use models to predict the risks of fluorine. It is still necessary to have a deep understanding of the source, occurrences, migration path and content influencing factors of fluorine to assess the health risks.

KEY WORDS: fluorine, atmosphere, rock, soil, water, influencing factors, health risk assessment

HIGHLIGHTS

(1) Fluorine is unevenly distributed due to the geochemical behavior, and natural sources mainly cause fluorine health problems.

(2) The fluorine content in the soil is affected by parent material, physical and chemical properties, and landform conditions of the soil.

(3) The comprehensive application of the health risk assessment and fluorine risk prediction models are a target for future research.

本文参考文献

[1]

Choubisa S L, Choubisa D, Wong M, et al. Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India[J].Environmental Science and Pollution Research International, 2016, 23(8): 7244-7254. doi: 10.1007/s11356-016-6319-8

[2]

谢正苗, 吴卫红, 徐建民, 等. 环境中氟化物的迁移和转化及其生态效应[J]. 环境科学进展, 1999, 7(2): 41-54.

Xie Z M, Wu W H, Xu J M, et al. Translocation and transfromation of fluorides in the environment and their biological effects[J]. Advances in Environmental Science, 1999, 7(2): 41-54.

[3]

李仪, 桂腾越, 燕倩, 等. 贵阳市主要饮用水源地水中氟化物含量与健康风险评价[J]. 贵州师范学院学报, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003

Li Y, Gui T Y, Yan Q, et al. Assessment of the fluoride content and health risk in the water of main drinking water sources of Guiyang City[J].Journal of Guizhou Education University, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003

[4]

Sharma D, Singh A, Verma K, et al. Fluoride: A review of pre-clinical and clinical studies[J].Environmental Toxicology and Pharmacology, 2017, 56: 297-313. doi: 10.1016/j.etap.2017.10.008

[5]

李静, 谢正苗, 徐建明, 等. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042

Li J, Xie Z M, Xu J M, et al. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J].Chinese Journal of Soil Science, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042

[6]

Mukherjee I, Singh U K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context[J].Environ Geochem Health, 2018, 40(6): 2259-2301. doi: 10.1007/s10653-018-0096-x

[7]

Alarcón-Herrera M T, Martin-Alarcon D A, Gutiérrez M, et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization[J].Science of the Total Environment, 2020, 698: 134168. doi: 10.1016/j.scitotenv.2019.134168

[8]

Skórka-Majewicz M, Goschorska M, żwierełło W, et al. Effect of fluoride on endocrine tissues and their secretory functions-Review[J].Chemosphere, 2020, 260: 127565. doi: 10.1016/j.chemosphere.2020.127565

[9]

Adeyeye O A, Xiao C, Zhang Z, et al. Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, northeastern China[J].Ecotoxicology and Environmental Safety, 2021, 211: 111926. doi: 10.1016/j.ecoenv.2021.111926

[10]

Wu L, Fan C, Zhang Z, et al. Association between fluoride exposure and kidney function in adults: A cross-sectional study based on endemic fluorosis area in China[J].Ecotoxicology and Environmental Safety, 2021, 225: 112735. doi: 10.1016/j.ecoenv.2021.112735

[11]

Amalraj A, Pius A. Health risk from fluoride exposure of a population in selected areas of Tamil Nadu South India[J].Food Science and Human Wellness, 2013, 2(2): 75-86. doi: 10.1016/j.fshw.2013.03.005

[12]

王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011

Wang G X, Cheng G D. The distributing regularity of fluorine and its environmental characteristics in arid area of northwest China[J].Scientia Geographica Sinica, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011

[13]

Amini M, Mueller K, Abbaspour K C, et al. Statistical modeling of global geogenic fluoride contamination in groundwaters[J]. Environmental Science & Technology, 2008, 42(10): 3662-3668.

[14]

Mukherjee I, Singh U K. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India[J].Environmental Research, 2022, 203: 111697. doi: 10.1016/j.envres.2021.111697

[15]

Raju N J. Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: Geochemistry and health implications[J].Quaternary International, 2017, 443: 265-278. doi: 10.1016/j.quaint.2016.05.028

[16]

张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106.

Zhang J, Zhou J L, Nai W H, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106.

[17]

郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668-677.

Hao Q Y, Xu X T, Zhang X B, et al. Hydrochemical characteristics and genesis of high-flourine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668-677.

[18]

刘春华, 王威, 卫政润, 等. 微山湖流域高氟地下水的成因分析[J]. 地球学报, 2018, 39(3): 351-357.

Liu C H, Wang W, Wei Z R, et al. Distribution characteristics and genesis of high fluoride groundwater in Weishan Lake watershed[J]. Acta Geoscientica Sinica, 2018, 39(3): 351-357.

[19]

杨振宁. 鲁北高氟地下水形成的水化学及水循环演化作用分析[D]. 北京: 中国地质大学(北京), 2016.

Yang Z N. The influence of hydrochemistry and water cycle for the formation of high fluorosis groundwater in northern plain of Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2016.

[20]

Wen D, Zhang F, Zhang E, et al. Arsenic, fluoride and iodine in groundwater of China[J].Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012

[21]

Meenakshi , Maheshwari R C. Fluoride in drinking water and its removal[J].Journal of Hazardous Materials, 2006, 137(1): 456-463. doi: 10.1016/j.jhazmat.2006.02.024

[22]

赵艳, 刘开泰, 薛茜, 等. 我国饮水型氟中毒预防措施效果评价[J]. 中国地方病学杂志, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046

Zhao Y, Liu K T, Xue Q, et al. Evaluation the effect of preventive measures on drinking-water-type fluorosis in China[J].Chinese Journal of Endemiology, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046

[23]

Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas[J].Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074

[24]

何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1): 87-95.

He L L, He S Y, Chen Z Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1): 87-95.

[25]

Ozsvath L D. Fluoride and environmental health: A review[J].Reviews in Environmental Science and Biotechnology, 2009, 8(1): 59-79. doi: 10.1007/s11157-008-9136-9

[26]

Cronin S J, Neall V E, Lecointre J A, et al. Environmental hazards of fluoride in volcanic ash: A case study from Ruapehu Volcano, New Zealand[J].Journal of Volcanology and Geothermal Research, 2003, 121(3-4): 271-291. doi: 10.1016/S0377-0273(02)00465-1

[27]

Rezaei M, Nikbakht M, Shakeri A, et al. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, South Iran[J].Environmental Science and Pollution Research, 2017, 24(18): 15471-15487. doi: 10.1007/s11356-017-9108-0

[28]

杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549-557.

Yang S, Chen H L, Gai N, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549-557.

[29]

Feng Y W, Ogura N, Feng Z W, et al. The concentrations and sources of fluoride in atmospheric depositions in Beijing, China[J].Water Air and Soil Pollution, 2003, 145(1): 95-107. doi: 10.1023/A:1023680112474

[30]

Chae G, Yun S, Mayer B, et al. Fluorine geochemistry in bedrock groundwater of South Korea[J].Science of the Total Environment, 2007, 385(1-3): 272-283. doi: 10.1016/j.scitotenv.2007.06.038

[31]

Ozsvath , L D. Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin[J].Environmental Geology, 2006, 50(1): 132-138. doi: 10.1007/s00254-006-0192-6

[32]

Yang Q, Jung H B, Culbertson C W, et al. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, maine[J]. Environmental Science & Technology, 2009, 43(8): 2714-2719.

[33]

Singh G, Kumari B, Sinam G, et al. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective-A review[J].Environmental Pollution, 2018, 239: 95-108. doi: 10.1016/j.envpol.2018.04.002

[34]

Kabir H, Gupta A K, Tripathy S, et al. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity[J].Critical Reviews in Environmental Science and Technology, 2020, 50(11): 1116-1193. doi: 10.1080/10643389.2019.1647028

[35]

Apambire W B, Boyle D R, Michel F A, et al. Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana[J].Environmental Geology, 1997, 33(1): 13-24. doi: 10.1007/s002540050221

[36]

Obst M, Schmid G. 3D chemical mapping: Application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences[J]. Methods in Molecular Biology, 2014, 1117: 757-781.

[37]

Cronin S J, Manoharan V, Hedley M J, et al. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand[J].New Zealand Journal of Agricultural Research, 2000, 43(3): 295-321. doi: 10.1080/00288233.2000.9513430

[38]

Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides[J].Journal of Hazardous Materials, 2006, 133(1-3): 119-128. doi: 10.1016/j.jhazmat.2005.10.012

[39]

Fuge R. Fluorine in the environment, a review of its sources and geochemistry[J].Applied Geochemistry, 2019, 100: 393-406. doi: 10.1016/j.apgeochem.2018.12.016

[40]

易春瑶, 汪丙国, 靳孟贵, 等. 水-土-植物系统中氟迁移转化规律的研究进展[J]. 安全与环境工程, 2013, 20(6): 59-64.

Yi C Y, Wang B G, Jin M G, et al. Research progress of migration and transformation laws of fluoride in groundwater-soil-plant system[J]. Safety and Environmental Engineering, 2013, 20(6): 59-64.

[41]

范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582.

Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582.

[42]

Sarkar M, Banerjee A, Pramanick P P, et al. Use of laterite for the removal of fluoride from contaminated drinking water[J].Journal of Colloid and Interface Science, 2006, 302(2): 432-441. doi: 10.1016/j.jcis.2006.07.001

[43]

Li Z L, Tainosho Y, Shiraishi K, et al. Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica[J].Geochemical Journal, 2003, 37(2): 145-161. doi: 10.2343/geochemj.37.145

[44]

Solanki Y S, Agarwal M, Gupta A B, et al. Fluoride occur-rences, health problems, detection, and remediation methods for drinking water: A comprehensive review[J].Science of the Total Environment, 2022, 807: 150601. doi: 10.1016/j.scitotenv.2021.150601

[45]

Ali S, Fakhri Y, Golbini M, et al. Concentration of flu-oride in groundwater of India: A systematic review, meta-analysis and risk assessment[J].Groundwater for Sustainable Development, 2019, 9: 100224. doi: 10.1016/j.gsd.2019.100224

[46]

Wang B Y, Chen Z L, Zhu J, et al. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process[J].Water Science and Technology, 2013, 68(1): 134-143. doi: 10.2166/wst.2013.204

[47]

Li Y M, Liang C K, Slemenda C W, et al. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures[J].Journal of Bone and Mineral Research, 2001, 16(5): 932-939. doi: 10.1359/jbmr.2001.16.5.932

[48]

Addison M J, Rivett M O, Robinson H, et al. Fluoride occurrence in the lower East African Rift System, Southern Malawi[J].Science of the Total Environment, 2020, 712: 136260. doi: 10.1016/j.scitotenv.2019.136260

[49]

Guzmán A, Nava J L, Coreño O, et al. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor[J].Chemosphere, 2016, 144: 2113-2120. doi: 10.1016/j.chemosphere.2015.10.108

[50]

Kashyap S J, Sankannavar R, Madhu G M, et al. Fluoride sources, toxicity and fluorosis management techniques-A brief review[J].Journal of Hazardous Materials Letters, 2021, 2: 100033. doi: 10.1016/j.hazl.2021.100033

[51]

Lacson C F Z, Lu M, Huang Y, et al. Fluoride- containing water: A global perspective and a pursuit to sustainable water defluoridation management-An overview[J].Journal of Cleaner Production, 2021, 280: 124236. doi: 10.1016/j.jclepro.2020.124236

[52]

Chavoshi E, Afyuni M, Hajabbasi M A, et al. Health risk assessment of fluoride exposure in soil, plants, and water at Isfahan, Iran[J].Human and Ecological Risk Assessment, 2011, 17(2): 414-430. doi: 10.1080/10807039.2011.552397

[53]

Elloumi N, Ben Abdallah F, Mezghani I, et al. Effect of fluoride on almond seedlings in culture solution[J].Fluoride, 2005, 38(3): 193-198.

[54]

Ruan J Y, Ma L F, Shi Y Z, et al. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.)[J].Annals of Botany, 2004, 93(1): 97-105. doi: 10.1093/aob/mch010

[55]

Barbier O, Arreola-Mendoza L, Maria Del Razo L, et al. Molecular mechanisms of fluoride toxicity[J].Chemico-Biological Interactions, 2010, 188: 319-333. doi: 10.1016/j.cbi.2010.07.011

[56]

Yadav K K, Kumar S, Quoc B P, et al. Fluoride con-tamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 2019, 182.

[57]

Mumtaz N, Pandey G, Labhasetwar P K, et al. Global fluoride occurrence, available technologies for fluoride removal and electrolytic defluoridation: A review[J].Critical Reviews in Environmental Science and Technology, 2015, 45(21): 2357-2389. doi: 10.1080/10643389.2015.1025638

[58]

Tanouayi G, Gnandi K, Ouro-Sama K, et al. Distribution of fluoride in the phosphorite mining area of Hahotoe-Kpogame (Togo)[J]. Journal of Health & Pollution, 2016, 6(10): 84-94.

[59]

Chowdhury A, Adak M K, Mukherjee A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J].Journal of Hydrology, 2019, 574: 333-359. doi: 10.1016/j.jhydrol.2019.04.033

[60]

桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286.

Gui J Y, Han Z T, Zhang X Y, et al. Rock and mineral analysis[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286.

[61]

王滨滨, 郑宝山, 廖昂, 等. 氟在土壤中的富集与淋滤[J]. 矿物学报, 2010, 30(4): 496-500.

Wang B B, Zheng B S, Liao A, et al. Fluoride enrichment and leaching in the soil: A review[J]. Acta Mineralogica Sinica, 2010, 30(4): 496-500.

[62]

焦有, 宝德俊, 尹川芬, 等. 氟的土壤地球化学[J]. 土壤通报, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013

Jiao Y, Bao D J, Yin C F, et al. Geochemistry of fluorine[J].Chinese Journal of Soil Science, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013

[63]

何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012

He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J].Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012

[64]

汤洁, 卞建民, 李昭阳, 等. 松嫩平原氟中毒区地下水氟分布规律和成因研究[J]. 中国地质, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011

Tang J, Bian J M, Li Z Y, et al. The distribution regularity and causes of fluoride in groundwater of the fluorosis area, Songnen Plain[J].Geology in China, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011

[65]

孟伟, 潘自平, 何邵麟, 等. 西南氟病区典型高氟土壤的地球化学特征及氟富集原因[J]. 地球与环境, 2012, 40(2): 144-147.

Meng W, Pan Z P, He S L, et al. Element geochemistry and fluoride enrichment mechanism in high-fluoride soils of endemic fluorosis-affected areas in southwest china[J]. Earth and Environment, 2012, 40(2): 144-147.

[66]

何世春. 氟的富集规律[J]. 东华理工大学学报(自然科学版), 1990, 13(1): 88-97.

He S C. The concentrate law of flouride[J]. Journal of East China College of Geology (Natural Science), 1990, 13(1): 88-97.

[67]

袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20.

Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminated soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20.

[68]

陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800-1808.

Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar Region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800-1808.

[69]

刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2021, : 1-16.

Liu H Y, Liu M H, Zhang W M, et al. Distribution and fractionation of rare earth elements in high-fluoride groundwater from the North China Plain[J].Earth Science Frontiers, 2021, : 1-16.

[70]

龚子同, 黄标. 土壤中硒、氟、碘元素的空间分异与人类健康[J]. 土壤学进展, 1994, 22(5): 1-12.

Gong Z T, Huang B. Spatial distribution of selenium, fluorine and iodine in soil for human health[J]. Progress in Soil Science, 1994, 22(5): 1-12.

[71]

杨彦, 陆晓松, 李定龙, 等. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 2014, 31(4): 357-363.

Yang Y, Lu X S, Li D L, et al. Research progress of environmental health risk assessment in China[J]. Journal of Environment and Health, 2014, 31(4): 357-363.

[72]

赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97.

Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97.

[73]

侯捷, 曲艳慧, 宁大亮, 等. 我国居民暴露参数特征及其对风险评估的影响[J]. 环境科学与技术, 2014, 37(8): 179-187.

Hou J, Qu Y H, Ning D L, et al. Characteristics of human exposure factors in China and their uncertainty analysis in health risk assessment[J]. Environmental Science & Technology, 2014, 37(8): 179-187.

[74]

张映映, 冯流, 刘征涛, 等. 长江口区域水体半挥发性有机污染物健康风险评价[J]. 环境科学研究, 2007, 20(1): 18-23.

Zhang Y Y, Feng L, Liu Z T, et al. Health risk assessment on semivolatile organic compounds in water of Yangtze Estuary area[J]. Research of Environmental Sciences, 2007, 20(1): 18-23.

[75]

段小丽, 王宗爽, 王贝贝, 等. 我国北方某地区居民饮水暴露参数研究[J]. 环境科学研究, 2010, 23(9): 1216-1220.

Duan X L, Wang Z S, Wang B B, et al. Drinking water-related exposure factors in a typical area of northern China[J]. Research of Environmental Sciences, 2010, 23(9): 1216-1220.

[76]

段小丽, 黄楠, 王贝贝, 等. 国内外环境健康风险评价中的暴露参数比较[J]. 环境与健康杂志, 2012, 29(2): 99-104.

Duan X L, Huang N, Wang B B, et al. Development of exposure factors research methods in environmental health risk assessment[J]. Journal of Environment and Health, 2012, 29(2): 99-104.

[77]

段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, 32(5): 1329-1339.

Duan X L, Wang Z S, Li Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people[J]. Environmental Science, 2011, 32(5): 1329-1339.

[78]

王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10): 1164-1170.

Wang Z S, Duan X L, Liu P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170.

[79]

Jha S K, Nayak A K, Sharma Y K, et al. Potential fluoride contamination in the drinking water of Marks Nagar, Unnao District, Uttar Pradesh, India[J]. Environmental Geochemistry and Health, 2010, 32(3): 217-226.

[80]

Hu Y, You M, Liu G, et al. Spatial distribution and potential health risk of fluoride in drinking groundwater sources of Huaibei, Anhui Province[J]. Scientific Reports, 2021, 11(1): 8371.

[81]

Narsimha A, Hui Q, Nandan M J M, et al. Groundwater chem-istry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of South India[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111217.

[82]

赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320-324.

Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320-324.

[83]

Musah S Z, Emmanuel D S, Mahamuda A, et al. Hydro-geochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana[J]. Journal of Geochemical Exploration, 2019, 207: 106363.

[84]

Zang F, Wang S, Nan Z, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China[J].Geoderma, 2017, 305: 188-196.

[85]

Ahada C P S, Suthar S. Assessment of human health risk associated with high groundwater fluoride intake in southern districts of Punjab, India[J]. Exposure and Health, 2019, 11(4): 267-275.

[86]

Li Y, Wang S, Nan Z, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314.

[87]

Rahman M M, Bodrud-Doza M, Siddiqua M T, et al. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh[J]. Science of the Total Environment, 2020, 724: 138316.

[88]

Enalou H B, Moore F, Keshavarzi B, et al. Source apportionment and health risk assessment of fluoride in water resources, south of Fars province, Iran: Stable isotopes (delta O-18 and delta D) and geochemical modeling approaches[J]. Applied Geochemistry, 2018, 98: 197-205.

[89]

Liu J, Peng Y, Li C, et al. A characterization of gro-und water fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China[J]. Ecotoxicology and Environmental Safety, 2021, 207.

[90]

He L, Tu C, He S, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health, 2021, 43(3): 1137-1154.

[91]

Fan Y, Zhu T, Li M, et al. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China[J].Journal of Healthcare Engineering, 2017, 2017.

[92]

Brahman K D, Kazi T G, Baig J A, et al. Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan[J].Chemosphere, 2014, 100: 182-189.

[93]

Li Z, Ma Z, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J].Science of The Total Environment, 2014, 468: 843-853.

[94]

李梦莹, 王成尘, 毕珏, 等. 食品中重金属的人体健康风险评估方法研究进展[J]. 福建农林大学学报(自然科学版), 2021, 50(1): 1-9.

Li M Y, Wang C C, Bi Y, et al. Human health risk assessment of heavy metals in food: A review[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(1): 1-9.

[95]

Giovanni L, Francesca Z. Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant[J]. Environment International, 2012, 44: 80-91.

[96]

Li Y, Bi Y, Mi W, et al. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk[J]. Journal of Hazardous Materials, 2021, 406: 124337.

[97]

Ali S, Ali H, Pakdel M, et al. Spatial analysis and probabilistic risk assessment of exposure to fluoride in drinking water using GIS and Monte Carlo simulation[J].Environmental Science and Pollution Research, 2021, . doi: 10.1007/s11356-021-16075-8

[98]

Yu Y, Cui S, Fan R, et al. Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources[J]. Environmental Pollution, 2020, 262: 114249.

[99]

Cao H, Xie X, Wang Y, et al. Predicting geogenic ground-water fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148.

[100]

Yu Y Q, Yang J Y. Health risk assessment of fluorine in fertilizers from a fluorine contaminated region based on the oral bioaccessibility determined by Biomimetic Whole Digestion-Plasma in-vitro Method (BWDPM)[J]. Journal of Hazardous Materials, 2020, 383: 121-124.

[101]

Rizzu M, Tanda A, Canu L, et al. Fluoride uptake and translocation in food crops grown in fluoride-rich soils[J]. Journal of The Science of Food and Agriculture, 2020, 100(15): 5498-5509.

[102]

Rizzu M, Tanda A, Cappai C, et al. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review[J]. Science of the Total Environment, 2021, 787: 147650.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[3]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[7]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[8]

邰苏日嘎拉, 李永春, 周文辉, 王永亮, 陈国栋, 苏日力格, 张祥. 宁夏固原市原州区高氟地区氟对人体健康的影响. 岩矿测试, 2021, 40(6): 919-929. doi: 10.15898/j.cnki.11-2131/td.202109080119

[9]

刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

[10]

薛源, 杨永亮, 万奎元, 吴学丽, 朱晓华, 王晓春, 罗松光. 沈阳市细河周边农田土壤和大气中有机氯农药和多氯联苯初步研究. 岩矿测试, 2011, 30(1): 27-32.

[11]

王腾云, 周国华, 孙彬彬, 贺灵, 曾道明, 陈亚东, 叶荣. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究. 岩矿测试, 2016, 35(3): 295-301. doi: 10.15898/j.cnki.11-2131/td.2016.03.013

[12]

张向阳, 韩占涛, 刘福亮, 桂建业. 土壤中氟的形态分析. 岩矿测试, 2008, 27(4): 284-286.

[13]

董会军, 董建芳, 王昕洲, 李义, 赵峰. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响. 岩矿测试, 2019, 38(5): 510-517. doi: 10.15898/j.cnki.11-2131/td.201808230096

[14]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[15]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[16]

刘冬, 贺灵, 文雪琴, 孙彬彬, 曾道明, 吴超, 成晓梦. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139

[17]

任冬, 周小琳, 宗有银, 张廷忠. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

[18]

赵悦, 秦晓鹏, 刘菲. 水体中主要阴离子及pH值对双氯芬酸液相色谱定量的影响. 岩矿测试, 2018, 37(1): 79-86. doi: 10.15898/j.cnki.11-2131/td.201704260067

[19]

刘景龙, 吴巧丽. 原子荧光光谱仪工作温度对水体中砷含量测定的影响. 岩矿测试, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052

[20]

黄园英, 袁欣, 王倩, 罗松光, 刘晓端. 纳米锌去除水体中As(Ⅲ)吸附动力学和影响因素. 岩矿测试, 2013, 32(5): 759-766.

计量
  • PDF下载量(17)
  • 文章访问量(465)
  • HTML全文浏览量(182)
  • 被引次数(0)
目录

Figures And Tables

环境中氟的来源及健康风险评估研究进展

李凤嫣, 蒋天宇, 余涛, 杨忠芳, 侯青叶, 王凌霄