【引用本文】 赵晨辉, 王成辉, 赵如意, 等. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义[J]. 岩矿测试, 2020, 39(6): 908-920. doi: 10.15898/j.cnki.11-2131/td.202007310107
ZHAO Chen-hui, WANG Cheng-hui, ZHAO Ru-yi, et al. Isotopic Composition and Alteration Characteristics of Dacite Porphyry, and Their Prospecting Significance in the Dabaoshan Copper Deposit of Guangdong Province[J]. Rock and Mineral Analysis, 2020, 39(6): 908-920. doi: 10.15898/j.cnki.11-2131/td.202007310107

广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义

1. 

自然资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

2. 

东华理工大学核资源与环境国家重点实验室, 江西 南昌 330013

3. 

中国地质大学(北京), 北京 100083

4. 

广东省大宝山矿业有限公司, 广东 韶关 512127

收稿日期: 2020-07-31  修回日期: 2020-11-18  接受日期: 2020-11-25

基金项目: 中国地质调查局地质调查项目“中国矿产地质志”(DD20160346,DD20190379)

作者简介: 赵晨辉, 硕士研究生, 研究方向为金属矿产成矿规律。E-mail:GEOChenhui@163.com

通信作者: 王成辉, 博士, 副研究员, 研究方向为金矿和稀有稀散稀土矿产。E-mail:wangchenghui131@sina.com

Isotopic Composition and Alteration Characteristics of Dacite Porphyry, and Their Prospecting Significance in the Dabaoshan Copper Deposit of Guangdong Province

1. 

Key Laboratory of Metallogeny and Mineral Resource Assessment, Ministry of Natural Resources; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 

State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

3. 

China University of Geosciences(Beijing), Beijing 100083, China

4. 

Guangdong Province Dabaoshan Mining Co., LTD, Shaoguan 512127, China

Corresponding author: WANG Cheng-hui, wangchenghui131@sina.com

Received Date: 2020-07-31
Revised Date: 2020-11-18
Accepted Date: 2020-11-25

摘要:铜矿床类型以斑岩型和矽卡岩型为主,英安斑岩是斑岩型铜钼金成矿系统中普遍发育的岩石类型,当发育良好的热液蚀变时即可作为找矿标志和成矿岩体。广东大宝山是华南目前最大的铜多金属矿,前人研究表明该矿区英安斑岩既是铜多金属矿的成矿母岩,又是有利的赋矿围岩,但关于该矿区英安斑岩与成矿的关系目前存在多种认识,随着近年来英安斑岩中厚大矿体的找矿突破,英安斑岩与成矿的关系再度成为关注的焦点。本文在野外工作和室内分析的基础上,采用X射线荧光光谱法(XRF)和电感耦合等离子体质谱法(ICP-MS)等技术测定大宝山英安斑岩样品中的铜、钨、硅、铝和钙等主次痕量元素的含量,重点研究了该矿区英安斑岩的同位素、金属元素组成与蚀变特征,探讨蚀变与找矿方向的关系。结果表明:①铜元素含量变化于107~6909μg/g之间,与矿区采场铜矿石品位0.3%~0.5%一致,烧失量(LOI)等可代表蚀变程度的地球化学指标与铜存在正相关性;②热液蚀变在英安斑岩中广泛发育,由早到晚依次为钾硅酸盐化蚀变、青磐岩化蚀变和绢英岩化蚀变;③各种蚀变中,绢英岩化蚀变中的铜含量要高出其他蚀变带2~5倍,表明绢英岩化热液蚀变与铜矿化关系密切,是重要的找矿标志;④英安斑岩深部(270m标高以下)蚀变强度没有减弱,仍然具有很大的找矿潜力;此外,英安斑岩与侏罗系接触带以及岩体中的围岩捕掳体也是重要的找矿方向,均可能赋存有矽卡岩型的富铜矿。

关键词: 华南, 大宝山, 斑岩铜矿, 英安斑岩, X射线荧光光谱法, 电感耦合等离子体质谱法, 主次痕量元素, 成矿时代

要点

(1) XRF和ICP-MS测试结果指示铜矿化与晚阶段的绢英岩化关系密切。

(2)划分了新的矿区中南部英安斑岩蚀变分带。

(3) 指出了大宝山矿区英安斑岩和粤北地层中的找矿方向。

Isotopic Composition and Alteration Characteristics of Dacite Porphyry, and Their Prospecting Significance in the Dabaoshan Copper Deposit of Guangdong Province

ABSTRACT

BACKGROUND:

The main types of copper deposits are porphyry and skarn types. Dacite porphyry is a rock type commonly developed in the porphyry Cu-Mo-Au system. The rock can be used as a marker clue for ore prospecting and ore-forming rock when there is well-developed hydrothermal alteration. The Dabaoshan deposit is currently the largest copper polymetallic deposit in the South China Block. Previous studies have shown that the dacite porphyry of the mining area is not only the ore-forming parent rock, but also a favorable ore-bearing wall rock. However, there are some debates about the relationship between dacite porphyry and mineralization in this mining area. With the breakthrough of prospecting for medium and large dacite porphyry ore bodies in recent years, the relationship between dacite porphyry and mineralization has once again become a concern.

OBJECTIVES:

To understand the relationship between dacite porphyry alteration and mineralization of the Dabaoshan deposit.

METHODS:

Based on field work and indoor analysis, X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) were used to determine copper, tungsten, silicon, aluminum and calcium in Dabaoshan dacite porphyry samples. The isotope composition, metal element contents and alteration characteristics of the dacite porphyry in the mining area were used to discuss the relationship between alteration and prospecting direction.

RESULTS:

The copper content ranged from 107 to 6909μg/g, which was consistent with the copper ore grade of 0.3%-0.5% in the mining area. The LOI and other geochemical indicators that can represent the degree of alteration were positively correlated with copper. Hydrothermal alteration was widely developed in dacite porphyry, including potassium, prophyliticition and quartz-sericitization from early to late stage. Among different stages of alterations, the copper content of quartz-sericitization was 2 to 5 times higher than other alteration types, indicating that quartz-sericitization was closely related to copper mineralization and was an important prospecting marker clue.

CONCLUSIONS:

The deep alteration intensity of the dacite porphyry (below the 270m elevation) has not been weakened, suggesting a great prospecting potential. In addition, the contact zone between dacite porphyry and the Jurassic strata, and the xenoliths in the dacite porphyry are also important prospecting directions, which may host skarn-type copper-rich deposits.

KEY WORDS: South China Block, Dabaoshan, porphyry copper deposit, dacite porphyry, X-ray fluorescence spectrometry, inductively coupled plasma-mass spectrometry, major, minor and trace elements, metallogenic epoch

HIGHLIGHTS

(1) XRF and ICP-MS results indicated that copper mineralization was closely related to the late-stage quartz sericitization.

(2) The new dacite porphyry alteration zone in the south-central of mining area was identified.

(3) The new prospecting direction of dacite porphyry and strata in northern Guangdong was identified.

本文参考文献

[1]

侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44.

Hou Z Q, Yang Z M, Wang R, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J].Earth Science Frontiers, 2020, 27(2): 20-44.

[2]

陈华勇, 吴超. 俯冲带斑岩铜矿系统成矿机理与主要挑战[J]. 中国科学(地球科学), 2020, 50(7): 865-886.

Chen H Y, Wu C. Metallogenesis and major challenges of porphyry copper systems above subduction zones[J].Science China (Earth Sciences), 2020, 50(7): 865-886.

[3]

Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105: 3-41.

[4]

王登红, 陈振宇, 黄凡, 等. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 2014, 38(2): 230-238.

Wang D H, Chen Z Y, Huang F, et al. Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling Region[J]. Geotectonica et Metallogenia, 2014, 38(2): 230-238.

[5]

Sillitoe R H, Devine F A M, Sanguinetti M I, et al. Geology of the Josemaría porphyry copper-gold deposit, Argentina:Formation, exhumation, and burial in two million years[J].Economic Geology, 2019, 114: 407-425.

[6]

Cannell J, David C, Walshe J L, et al. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J].Geology, 2005, 100: 979-1003.

[7]

吴斌, 方针, 叶震超, 等. Don Javier斑岩型铜钼矿床地质特征[J]. 矿床地质, 2013, 32(6): 1159-1170.

Wu B, Fang Z, Ye Z C, et al. Geological characteristics of Don Javier porphyry copper molybdenum deposit[J]. Mineral Deposits, 2013, 32(6): 1159-1170.

[8]

黄雅琪, 邱昆峰, 于皓丞, 等. 西秦岭格娄昂金矿床赋矿斑岩岩石成因及其地质意义[J]. 岩石学报, 2020, 36(5): 1567-1585.

Huang Y Q, Qiu K F, Yu H C, et al. Petrogenesis of ore-hosting porphyry in the Gelouang gold deposit, West Qinling and its geological implications[J]. Acta Petrologica Sinica, 2020, 36(5): 1567-1585.

[9]

车合伟, 周振华, 马星华, 等. 大兴安岭北段争光金矿英安斑岩地球化学特征、锆石U-Pb年龄及Hf同位素组成[J]. 地质学报, 2015, 89(8): 1417-1486.

Che H W, Zhou Z H, Ma X H, et al. Geochemical characteristics, zircons U-Pb ages and Hf isotopic composition of the Dacite porphyry from Zhengguang Au deposit in northern Great Xing'an Range[J]. Acta Geologica Sinica, 2015, 89(8): 1417-1486.

[10]

杨水源, 蒋少涌, 姜耀辉, 等. 江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义[J]. 中国科学(地球科学), 2010, 40(8): 953-969.

Yang S Y, Jiang S Y, Jiang Y H, et al. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China[J].Science China (Earth Sciences), 2010, 40(8): 953-969.

[11]

王登红. 对华南矿产资源深部探测若干问题的探讨——以若干超大型矿床深部找矿突破为例[J]. 中国地质, 2016, 43(5): 1585-1598.

Wang D H. A discussion on some problems concerning deep exploration of mineral resources in South China[J].Geology in China, 2016, 43(5): 1585-1598.

[12]

伍静, 王广强, 梁华英, 等. 粤北大宝山矿区加里东期火山岩的厘定及其地质意义[J]. 岩石学报, 2014, 30(4): 1145-1154.

Wu J, Wang G Q, Liang H Y, et al. Identification of caledonian volcanic rock in the Dabaoshan ore-field in northern Guangdong Province and its geological implication[J]. Acta Petrologica Sinica, 2014, 30(4): 1145-1154.

[13]

Wang L, Jin X B, Xu D M, et al. Geochronological, geo-chemical, and Nd-Hf isotopic constraints on the origin of magmatism in the Dabaoshan ore district of South China[J]. Geological Journal, 2019, 54: 1518-1534.

[14]

Su S Q, Qin K Z, Li G M, et al. Geochronology and geo-chemistry of Early Silurian felsic volcanic rocks in the Dabaoshan ore district, South China:Implications for the petrogenesis and geodynamic setting[J].Geological Journal, 2019, 54: 3286-3303.

[15]

赵如意, 陈毓川, 王登红, 等. 粤北大宝山矿区次英安斑岩与铜多金属矿之间关系研究[J]. 大地构造与成矿学, 2019, 43(1): 123-140.

Zhao R Y, Chen Y C, Wang D H, et al. Relationship between Cu-polymetallic mineralization and the porphyritic dacite in Dabaoshan orefield in the northern Guangdong Province[J].Geotectonia et Metallogenia, 2019, 43(1): 123-140.

[16]

赵如意, 王登红, 王要武, 等. 广东省大宝山斑岩型铜矿床勘查突破及其区域找矿意义[J]. 地质学报, 2020, 94(1): 204-216.

Zhao R Y, Wang D H, Wang Y W, et al. A prospecting breakthrough and process in the Daobaoshan porphyry copper deposit in Guangdong Province[J]. Acta Geologiica Sinica, 2020, 94(1): 204-216.

[17]

王要武, 王登红, 刘战庆, 等. 广东大宝山矿田船肚钼钨铜矿床的地质特征、成矿规律与找矿方向[J]. 矿床地质, 2019, 38(1): 211-225.

Wang Y W, Wang D H, Liu Z Q, et al. Geological characteristics, mineralization regularity and prospecting of Chuandu molybdenum, tungsten and copper deposit in Dabaoshan ore field, Guangdong Province[J]. Mineral Deposits, 2019, 38(1): 211-225.

[18]

葛朝华,韩发. 广东大宝山矿床喷气-沉积成因地质地球化学特征[M] . 北京: 北京科学技术出版社, 1987: 1-111.

Ge C H,Han F. Geological and geochemical features of exhalative-sedimentary mineralization of the Dabaoshan deposit in Guangdong Province[M] . Beijing: Beijing Science and Technology Press, 1987: 1-111.
[19]

傅晓明, 张德贤, 戴塔根, 等. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例[J]. 大地构造与成矿学, 2018, 42(3): 505-519.

Fu X M, Zhang D X, Dai T G, et al. Trace element record of pyrite from diverse deposits-Examples from the Dabaoshan polymetallic deposit of northern Guangdong, South China[J]. Geotectonia et Metallogenia, 2018, 42(3): 505-519.

[20]

Wang L, Hu M G, Yang Z, et al. U-Pb and Re-Os geochronology and geodynamic setting of the Dabaoshan polymetallic deposit, northern Guangdong Province, South China[J]. Ore Geology Reviews, 2011, 43: 40-49.

[21]

Huang W T, Liang H Y, Wu J, et al. Formation of por-phyry Mo deposit in a deep fault zone, example from the Dabaoshan porphyry Mo deposit in northern Guangdong, South China[J].Ore Geology Reviews, 2017, 81: 940-952.

[22]

Mao W, Rusk B, Yang F C, et al. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China:Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J].Economic Geology, 2017, 112: 889-918.

[23]

Qu H Y, Mao J W, Zhou S M, et al. Metallogenesis of strati-form Cu mineralization in the Dabaoshan polymetallic deposit, northern Guangdong Province, South China[J].Journal of Geochemical Exploration, 2020, 210: 1-15.

[24]

刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3863-3878.

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J].China Science Bulletin, 2013, 58(36): 3863-3878.

[25]

李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 655-666.

Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal element[J]. Rock and Mineral Analysis, 2020, 39(5): 655-666.

[26]

秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161.

Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161.

[27]

陈静, 高志军, 陈冲科, 等. X射线荧光光谱分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91-98.

Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98.

[28]

周文喜, 王华建, 付勇, 等. 基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J]. 岩矿测试, 2017, 36(2): 97-106.

Zhou W X, Wang H J, Fu Y, et al. Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J]. Rock and Mineral Analysis, 2017, 36(2): 97-106.

[29]

蔡锦辉, 刘家齐. 粤北大宝山多金属矿区岩浆岩的成岩时代[J]. 广东地质, 1993, 8(2): 45-52.

Cai J H, Liu J Q. The magma diagenetic age of Dabaoshan polymetallic mine lot in north Guangdong Province[J].Guangdong Geology, 1993, 8(2): 45-52.

[30]

蔡锦辉, 韦昌山, 张燕挥, 等. 广东省大宝山钼多金属矿区岩浆岩成岩时代研究[J]. 华南地质与矿产, 2013, 29(2): 146-155.

Cai J H, Wei C S, Zhang Y H, et al. Zircon U-Pb ages of magmatic rocks of Dabaoshan molybdenum-polymetallic deposit, Guangdong Province[J].Geology and Mineral Resources of South China, 2013, 29(2): 146-155.

[31]

王磊, 胡明安, 屈文俊, 等. 粤北大宝山多金属矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os定年及其地质意义[J]. 中国地质, 2012, 39(1): 29-42.

Wang L, Hu M A, Qu W J, et al. Zircon LA-ICP-MS U-Pb and molybdenite Re-Os dating of the Dabaoshan polymetallic deposit in northern Guangdong Province and its geological implications[J].Geology in China, 2012, 39(1): 29-42.

[32]

刘姤群, 杨世义, 张秀兰, 等. 粤北大宝山多金属矿床成因的初步探讨[J]. 地质学报, 1985, 59(1): 47-61.

Liu G Q, Yang S Y, Zhang X L, et al. A primary study on the genesis of the Dabaoshan polymetallic deposit in northern Guangdong Province[J].Acta Geologica Sinica, 1985, 59(1): 47-61.

[33]

裴太昌, 钟树荣, 刘胜, 等. 粤北大宝山-雪山嶂地区成矿系列及成矿模式[J]. 地质找矿论丛, 1994, (3): 48-58.

Pei T C, Zhong S R, Liu S, et al. Metallogenic series and model in Dabaoshan-Xueshanzhang Area, north Guangdong[J].Contributions to Geology and Mineral Resources Research, 1994, (3): 48-58.

[34]

瞿泓滢, 毛景文, 周淑敏, 等. 粤北大宝山志留纪次英安斑岩年代学、地球化学特征及其地质意义[J]. 矿床地质, 2019, 38(2): 331-354.

Qu H Y, Mao J W, Zhou S M, et al. Geochronology and geochemistry of Silurian dacite-porphyry in Daobaoshan deposit, northern Guangdong Province, and its geological significance[J].Mineral Deposits, 2019, 38(2): 331-354.

[35]

毛伟, 李晓峰, 杨富初, 等. 广东大宝山多金属矿床花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(12): 4104-4120.

Mao W, Li X F, Yang F C, et al. Zircon LA-ICP-MS U-Pb ages of granites at Dabaoshan polymetallic deposit and its geological significance, Guangdong, South China[J].Atca Petrologica Sinica, 2013, 29(12): 4104-4120.

[36]

潘会彬, 康志强, 付文春, 等. 粤北大宝山矿区徐屋岩体SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质通报, 2014, 33(6): 894-899.

Pan H B, Kang Z Q, Fu W C, et al. SHRIMP zircon U-Pb ages of Xuwu subdacitic porphyry in the Dabaoshan ore district of northern Guangdong Province and its geological implications[J].Geological Bulletin of China, 2014, 33(6): 894-899.

[37]

祝新友, 韦昌山, 王艳丽, 等. 广东大宝山钼钨多金属矿床成矿系统与找矿预测[J]. 矿产勘查, 2011, 2(6): 661-667.

Zhu X Y, Wei C S, Wang Y L, et al. The matallogenic system and the prognosis, Dabaoshan Mo-Cu-Pb-Zn deposit, Guangdong Province[J].Mineral Exploration, 2011, 2(6): 661-667.

[38]

舒良树, 陈祥云, 楼法生, 等. 华南前侏罗纪构造[J]. 地质学报, 2020, 94(2): 333-360.

Shu L S, Chen X Y, Lou F S, et al. Pre-Jurassic tectonics of the South China[J].Acta Geologica Sinica, 2020, 94(2): 333-360.

[39]

古菊云, 吴琼英, 廖雪苹, 等. 大宝山大陆次火山——火山活动和矿床成因的初步研究[J]. 地质与勘探, 1984, (3): 2-8.

Gu J Y, Wu Q Y, Liao X P, et al. A preliminary study on the subvolcanic volcanic activity and the genesis of the Deposit in Dabaoshan[J].Geology and Exploration, 1984, (3): 2-8.

[40]

李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析[J]. 中国科学(地球科学), 2015, 45(9): 1294-1303.

Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China (Earth Sciences), 2015, 45(9): 1294-1303.

[41]

王磊, 胡明安, 杨振, 等. 粤北大宝山矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地球科学——中国地质大学学报, 2010, 35(2): 175-185.

Wang L, Hu M A, Yang Z, et al. Geochronology and its geological implication of LA-ICP-MS zircon U-Pb dating of granodiorite porphyries in Dabaoshan polumetallic ore deposit, North Guangdong Province[J].Earth Science-Journal of China University of Geosciences, 2010, 35(2): 175-185.

[42]

魏振伟. 广东省大宝山斑岩型钼矿床围岩蚀变特征[J]. 甘肃科技, 2007, 23(9): 103-104.

Wei Z W. Wall rock alteration characteristics of Dabaoshan porphyry molybdenum deposit in Guangdong Province[J].Gansu Science and Technology, 2007, 23(9): 103-104.

[43]

王兰根, 王要武. 大宝山矿区铜硫矿体矿石类型与围岩蚀变的关系[J]. 南方金属, 2012, (6): 31-33.

Wang L G, Wang Y W. Relationship between the rock type within the copper-sulfur ore body and the wall-rock alteration at Dabaoshan mine[J].Southern Metals, 2012, (6): 31-33.

[44]

权立诚.广东大宝山铜钼多金属矿床构造蚀变调查与找矿预测[D].北京: 中国地质科学院, 2012.

Quan L C.Survey of tectonic-altereation Dabaoshan copper -molybdenum polymetallic deposit, Guangdong Province, and ore-prospecting[D].Beijing: Chinese Academy of Geological Sciences, 2012.

[45]

蒋金昌, 魏东, 高桂山, 等. 浅谈大宝山围岩蚀变与成矿的关系[J]. 南方金属, 2018, (4): 34-36.

Jiang J C, Wei D, Gao G S, et al. Discussion on the relationship between the alteration of the surrounding rocks and the mineralization in Dabaoshan[J].Southern Metals, 2018, (4): 34-36.

[46]

应立娟, 王登红, 李超, 等. 广东大宝山北部层状矿体硫化物Re-Os测年及指示[J]. 地学前缘, 2017, 24(5): 31-38.

Ying L J, Wang D H, Li C, et al. Re-Os dating of sulfides in the north stratiform ore body in Dabaoshan, Guangdong Province and its indication[J].Earth Science Frontiers, 2017, 24(5): 31-38.

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[3]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[4]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[5]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[6]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[7]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[10]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[11]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[12]

段鸿莺, 梁国立, 苗建民. 波长色散X射线荧光光谱法测定古陶瓷胎釉中37 个主次痕量元素. 岩矿测试, 2011, 30(3): 337-342.

[13]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[14]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[15]

孙晓明, 张燕, 刘邦, 石贵勇, 韦慧晓. 锍镍试金富集-等离子体质谱法测定煌斑岩中铂族元素. 岩矿测试, 2008, 27(4): 241-244.

[16]

罗学辉, 苏建芝, 鹿青, 杨理勤, 王岚. 熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素. 岩矿测试, 2014, 33(2): 230-235.

[17]

张伟娜, 陆继龙, 段太成. 高温高压密闭溶样-电感耦合等离子体质谱法测定荧光粉中的杂质元素. 岩矿测试, 2012, 31(1): 90-94.

[18]

燕娜, 赵小龙, 赵生国, 郑红文. 红土镍矿样品前处理方法和分析测定技术研究进展. 岩矿测试, 2015, 34(1): 1-11. doi: 10.15898/j.cnki.11-2131/td.2015.01.001

[19]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[20]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

计量
  • PDF下载量(11)
  • 文章访问量(454)
  • HTML全文浏览量(63)
  • 被引次数(0)
目录

Figures And Tables

广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义

赵晨辉, 王成辉, 赵如意, 刘善宝, 饶娇萍, 刘武生, 张熊, 蒋金昌, 李挺杰