【引用本文】 吴石头, 许春雪, Klaus Simon, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044
WU Shi-tou, XU Chun-xue, Klaus Simon, et al. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究

1. 

Geowissenschaftliches Zentrum, Göttingen Universität, Göttingen 37077, Germany

2. 

国家地质实验测试中心, 北京 100037

3. 

中国科学技术大学地球和空间科学学院, 合肥 安徽 230026

收稿日期: 2017-03-29  修回日期: 2017-07-09  接受日期: 2017-07-15

基金项目: 中国地质科学院基本科研业务费项目(YYWF201622);国家公派留学基金(201306410007)

作者简介: 吴石头, 在读博士研究生, 研究方向为地球化学。E-mail:wushitou111@hotmail.com

通讯作者: 许春雪, 博士, 副研究员, 研究方向为标准物质研制。E-mail:xuchunxue1980@163.com

Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis

1. 

Geowissenschaftliches Zentrum, Göttingen Universität, Göttingen 37077, Germany

2. 

National Research Center for Geoanalysis, Beijing 100037, China

3. 

School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Corresponding author: XU Chun-xue, xuchunxue1980@163.com

Received Date: 2017-03-29
Revised Date: 2017-07-09
Accepted Date: 2017-07-15

摘要:探究LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率,可为激光参数设定、基体匹配选择、数据质量保证等方面提供重要参考。本文研究了193 nm ArF准分子激光系统对人工合成/地质样品玻璃、常见矿物和粉末压片的剥蚀行为,同时探究了激光参数(束斑直径、能量密度和剥蚀频率)对剥蚀速率的影响情况。从剥蚀坑形貌可知,193nm ArF激光对玻璃和绝大多数矿物的剥蚀行为良好,但对石英相对较差,这可能与石英内含有微观包裹体,剥蚀过程中局部受热不均有关。粉末压片的剥蚀行为呈现出不可控,可通过提高粉末压片的压制压力或降低粉末颗粒的粒径来改善剥蚀行为;当剥蚀深度大于1.5倍束斑直径时,剥蚀速率随剥蚀深度的增加而逐渐减小,剥蚀深度最多可达束斑直径的两倍左右(RESOlution M-50型号激光系统,3.0 J/cm2激光能量密度);剥蚀速率随激光能量密度的增加而增大,但基本不受剥蚀频率(2~20 Hz)影响。不同基体具有特征的剥蚀速率,本文报道了43种基体的剥蚀速率参数,总体而言,NIST系列玻璃的剥蚀速率大于地质样品玻璃,碳酸盐矿物和硫化物矿物大于硅酸岩矿物,粉末压片大于玻璃和常见矿物。

关键词: LA-ICP-MS, 193nm ArF激光, 剥蚀行为, 剥蚀速率, 能量密度

Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis

KEY WORDS: LA-ICP-MS, 193nm ArF excimer laser, ablation behavior, ablation rate, energy density

Highlights

· Ablation behaviors of 193nm ArF excimer laser for silicate glasses, common minerals, and powder pellets were systematically investigated.

· Except for quartz, glasses and most of minerals have the controllable ablation behaviors.

· Powder pellets have worse ablation behaviors, while their ablation behaviors could be improved either by increasing the tableting pressure or by decreasing the particle grain size.

· Ablation rate data of 43 different sample substrates were presented in this paper. In general, the ablation rates of powder pellets are larger than those of glasses and minerals, the ablation rates of carbonates and sulfides are larger than those of silicate minerals.

本文参考文献

[1]

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

[2]

Russo R E, Mao X, Gonzalez J J, et al. Laser ablation in analytical chemistry[J].Analytical Chemistry, 2013, 85(13): 6162-6177. doi: 10.1021/ac4005327

[3]

Li Z, Hu Z, Günther D, et al. Ablation characteristics of ilmenite using UV nanosecond and femtosecond lasers:Implications for non-matrix-matched quantification[J].Geostandards and Geoanalytical Research, 2016, 40(4): 477-491. doi: 10.1111/ggr.2016.40.issue-4

[4]

Flem B, Larsen R B, Grimstvedt A, et al. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology, 2002, 182(2-4): 237-247. doi: 10.1016/S0009-2541(01)00292-3

[5]

Stead C V, Tomlinson E L, Kamber B S, et al. Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS:An analytical strategy and applications[J].Geostandards and Geoanalytical Research, 2017, . doi: 10.1111/ggr.12157

[6]

Chew D M, Donelick R A, Donelick M B, et al. Apatite chlorine concentration measurements by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2014, 38(1): 23-35. doi: 10.1111/j.1751-908X.2013.00246.x

[7]

Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

[8]

Li C Y, Zhang R Q, Ding X, et al. Dating cassiterite using laser ablation ICP-MS[J].Ore Geology Reviews, 2016, 72: 313-322. doi: 10.1016/j.oregeorev.2015.07.016

[9]

Yang Y H, Wu F Y, Li Y, et al. In situ U-Pb dating of bastnaesite by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1017-1023. doi: 10.1039/C4JA00001C

[10]

Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS:208Pb correction and pros-pects for geological applications[J].Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530. doi: 10.1007/s00410-011-0609-4

[11]

Cruz-Uribe A M, Mertz-Kraus R, Zack T, et al. A new LA-ICP-MS method for Ti in quartz:Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge[J]. Geostandards and Geoanalytical Research, 2016, 41(1): 29-40.

[12]

Audétat A, Garbe-Schönberg D, Kronz A, et al. Charac-terisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J].Geostandards and Geoanalytical Research, 2015, 39(2): 171-184. doi: 10.1111/ggr.2015.39.issue-2

[13]

He Z, Huang F, Yu H, et al. A flux-free fusion tech-nique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1): 5-21. doi: 10.1111/ggr.2016.40.issue-1

[14]

Peters D, Pettke T. Evaluation of major to ultra trace element bulk rock chemical analysis of nanoparticulate pressed powder pellets by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(1): 5-28. doi: 10.1111/ggr.12125

[15]

Tang M, Arevalo Jr R, Goreva Y, et al. Elemental frac-tionation during condensation of plasma plumes generated by laser ablation:A ToF-SIMS study of condensate blankets[J].Journal of Analytical Atomic Spectrometry, 2015, 30(11): 2316-2322. doi: 10.1039/C5JA00320B

[16]

吴石头, 王亚平, 詹秀春, 等. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J]. 岩矿测试, 2016, 35(6): 612-620.

Wu S T, Wang Y P, Zhan X C, et al. Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J]. Rock and Mineral Analysis, 2016, 35(6): 612-620.

[17]

Hu Z C, Liu Y S, Chen L, et al. Contrasting matrix ind-uced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2): 425-430. doi: 10.1039/C0JA00145G

[18]

Jochum K P, Stoll B, Weis U, et al. Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200nm femtosecond LA-ICP-MS:A comparison with nanosecond lasers[J].Geostandards and Geoanalytical Research, 2014, 38(3): 265-292. doi: 10.1111/ggr.2014.38.issue-3

[19]

Sylvester P J. Matrix effects in laser ablation ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J]. Mineralogical Association of Canada, 2008, 40: 67-78.

[20]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[21]

Jackson S E. Calibration strategies for elemental analysis by LA-ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J]. Mineralogical Association of Canada, 2008, 40: 169-188.

[22]

Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-36.

[23]

吴石头, 王亚平, 许春雪, 等. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511.

Wu S T, Wang Y P, Xu C X, et al. Research progress on reference mterials for in situ elemental analysis by laser ablation-inductive coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 503-511.

[24]

Yang Q C, Jochum K P, Stoll B, et al. BAM-S005 type A and B:New silicate reference glasses for microanalysis[J].Geostandards and Geoanalytical Research, 2012, 36(3): 301-313. doi: 10.1111/ggr.2012.36.issue-3

[25]

Jochum K P, Wilson S A, Becker H, et al. FeMnOx-1:A new microanalytical reference material for the investigation of Mn-Fe rich geological samples[J].Chemical Geology, 2016, 432: 34-40. doi: 10.1016/j.chemgeo.2016.03.026

[26]

Tabersky D, Luechinger N A, Rossier M, et al. Develop-ment and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 955-962. doi: 10.1039/C4JA00054D

[27]

Klemme S, Prowatke S, Münker C, et al. Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses[J].Geostandards and Geoanalytical Research, 2008, 32(1): 39-54. doi: 10.1111/j.1751-908X.2008.00873.x

[28]

Horn I, Guillong M, Günther D, et al. Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science, 2001, 182(1-2): 91-102. doi: 10.1016/S0169-4332(01)00465-2

[29]

Borisov O V, Mao X, Russo R E, et al. Effects of crater develop-ment on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(11): 1693-1704. doi: 10.1016/S0584-8547(00)00272-X

[30]

Mank A J G, Mason P R D. A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8): 1143-1153. doi: 10.1039/a903304a

[31]

Li X, Liu X, Liu Y, et al. Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China Earth Sciences, 2015, 58(10): 1722-1730. doi: 10.1007/s11430-015-5110-x

[32]

Horstwood M S, Košler J, Gehrels G, et al. Community-derived standards for LA-ICP-MS U-(Th-) Pb geochro-nology-uncertainty propagation, age interpretation and data reporting[J].Geostandards and Geoanalytical Research, 2016, 40(3): 311-332. doi: 10.1111/ggr.2016.40.issue-3

[33]

吴石头, 王亚平, 许春雪, 等. 193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J]. 分析化学, 2016, 44(7): 1035-1041. doi: 10.11895/j.issn.0253-3820.151006

Wu S T, Wang Y P, Xu C X, et al. Elemental fractionation studies of 193nm ArF excimer laser ablation system at high spatial resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7): 1035-1041. doi: 10.11895/j.issn.0253-3820.151006

[34]

Günther D, Heinrich C A. Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1369-1374. doi: 10.1039/A901649J

[35]

Jeffries T E, Jackson S E, Longerich H P, et al. Application of a frequency quintupled Nd:YAG source (λ=213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J].Journal of Analytical Atomic Spectrometry, 1998, 13(9): 935-940. doi: 10.1039/A801328D

[36]

Kuhn B K, Birbaum K, Luo Y, et al. Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1): 21-27. doi: 10.1039/B917261K

[37]

Garbe-Schonberg D, Müller S. Nano-particulate pressed powder tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 990-1000. doi: 10.1039/C4JA00007B

[38]

Zhang C, Hu Z, Zhang W, et al. A green and fast laser fusion technique for bulk silicate rock analysis by laser ablation ICP-MS[J].Analytical Chemistry, 2016, 88(20): 10088-10094. doi: 10.1021/acs.analchem.6b02471

[39]

Ubide T, McKenna C A, Chew D M, et al. High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J].Chemical Geology, 2015, 409: 157-168. doi: 10.1016/j.chemgeo.2015.05.020

[40]

Raimondo T, Payne J, Wade B, et al. Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J].Contributions to Mineralogy and Petrology, 2017, 172(4): 17. doi: 10.1007/s00410-017-1339-z

[41]

Bi M, Ruiz A M, Gornushkin I, et al. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Applied Surface Science, 2000, 158(3-4): 197-204. doi: 10.1016/S0169-4332(00)00027-1

[42]

Müller W, Shelley M, Miller P, et al. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell[J].Journal of Analytical Atomic Spectrometry, 2009, 24(2): 209-214. doi: 10.1039/B805995K

[43]

Steely A N, Hourigan J K, Juel E, et al. Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS:Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation[J].Chemical Geology, 2014, 372: 92-108. doi: 10.1016/j.chemgeo.2014.02.021

[44]

Jackson S E, Günther D. The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2003, 18(3): 205-212. doi: 10.1039/b209620j

[45]

Gaboardi M, Humayun M. Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9): 1188-1197. doi: 10.1039/b900876d

[46]

Mao X L, Russo R E. Invited paper observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles[J]. Applied Physics A:Materials Science & Processing, 1996, 64(1): 1-6.

[47]

Russo R E, Mao X L, Liu C, et al. Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1084-1089. doi: 10.1039/b403368j

相似文献(共16条)

[1]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[2]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[3]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[4]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[5]

王建其, 林慈銮, 袁洪林, 柳小明, 第五春荣. 193 nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽. 岩矿测试, 2007, 26(1): 1-3.

[6]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[7]

李爱荣, 徐鸿志, 胡圣虹, 帅琴, 靳兰兰. 激光剥蚀等离子体质谱分析中激光剥蚀参数对信号响应的影响. 岩矿测试, 2005, (3): 171-175.

[8]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[9]

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究. 岩矿测试, 2012, 31(1): 127-131.

[10]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[11]

肖志斌, 柳小明, 李正辉, 张红. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量. 岩矿测试, 2012, 31(2): 229-233.

[12]

谭靖, 郭冬发, 张彦辉, 张良圣, 夏晨光, 谢胜凯, 李伯平. 常见岩石矿物微区特征信息激光剥蚀光谱快速识别技术研究. 岩矿测试, 2012, 31(5): 807-813.

[13]

金献忠, 谢健梅, 陈建国. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度. 岩矿测试, 2015, 34(3): 286-291. doi: 10.15898/j.cnki.11-2131/td.2015.03.004

[14]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[15]

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用. 岩矿测试, 2013, 32(1): 1-14.

[16]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

计量
  • PDF下载量(37)
  • 文章访问量(1019)
  • HTML全文浏览量(285)
  • 被引次数(0)
目录

Figures And Tables

193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平