

氢化物发生-电感耦合等离子体发射光谱法测定铀矿地质样品中痕量硒
1. | 河南省核工业放射性核素检测中心, 河南郑州 450044 |
2. | 珀金埃尔默仪器(上海)有限公司, 上海 201203 |
Determination of Trace Selenium in Uranium-bearing Geological Samples by Hydride Generation-Inductively Coupled Plasma-Optimal Emission Spectrometry
1. | Henan Radionuclide Detection Center of Nuclear Industry, Zhengzhou 450044, China |
2. | PerkinElmer Instruments(Shanghai) Co., LTD, Shanghai 201203, China |
摘要:采用氢化物发生技术测定地质样品中的硒时, 需要考虑样品的溶解、Se价态的预还原以及抑制共存离子的干扰。本文采用硝酸-盐酸-氢氟酸-高氯酸体系快速溶解样品, 直接加入浓盐酸煮沸将六价硒还原为四价硒, 将氢化物发生器与电感耦合等离子体发射光谱仪联用测定了铀矿地质样品中的痕量硒。样品中除了Cu2+其他离子的含量均不干扰硒的测定, 通过在试液中加入铁盐溶液或在硼氢化钠还原剂中加入铁氰化钾抑制了Cu2+的干扰。方法检出限为0.12μg/L, 精密度(RSD)小于5%。与前人报道的方法相比, 本方法检出限较低, 操作简单快速, 冲洗30 s可消除记忆效应, 适合批量铀矿地质样品中痕量硒的测定。
Determination of Trace Selenium in Uranium-bearing Geological Samples by Hydride Generation-Inductively Coupled Plasma-Optimal Emission Spectrometry
ABSTRACT Using hydride generation to determine selenium in geological samples, the sample dissolution, selenium pre-reduction and the suppression of coexisting ion interference should be considered. In this study, concentrated hydrochloric acid was added to reduce Se(Ⅵ) to Se(Ⅳ) after the sample was dissolved by nitric acid, hydrochloric acid, hydrofluoric acid and perchloric acid. The trace selenium in the sample was determined by hydride generator coupled with Inductively Coupled Plasma-Optimal Emission Spectrometry (ICP-OES). The ions in the sample had no interference on the determination of selenium except Cu2+. Adding ferric salt solution to the sample solution or adding potassium ferricyanide to the reductant are beneficial to suppress the interference of Cu2+. The detection limit of this method was 0.12 μg/L, which is lower than that of a previous study, and RSD was less than 5%. The method was rapid and needed 30 seconds rinsing to eliminate the memory effect, which makes it suitable for the determination of trace selenium in uranium-bearing geological samples.

本文参考文献
[1] |
苏文峰, 李刚. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J]. 岩矿测试, 2008, 27(2): 120-122. Su W F, Li G. Determination of Trace Selenium in Soil Samples by Hydride Generation-Atomic Fluorescence Spectrometry with Baking Separation[J]. Rock and Mineral Analysis, 2008, 27(2): 120-122. |
[2] |
Zhang N, Sun G L, Ma H R, et al. Determination of Ultra-trace Selenium in Mineral Samples by Hydride Generation Atomic Fluorescence Spectrometry with Pressurized-PTFE-vessel Acid Digestion[J].Minerals Engineering, 2007, 20(15): 1397-1400. doi: 10.1016/j.mineng.2007.09.001 |
[3] |
柴昌信, 陈世焱, 陈月源, 等. 氢化物发生-原子荧光光谱法直接测定多金属矿中的硒和碲[J]. 岩矿测试, 2009, 28(2): 143-146. Chai C X, Chen S Y, Chen Y Y, et al. Determination of Selenium and Tellurium in Polymetallic Minerals by Hydride-generation Atomic Fluorescence Spectrophoto-metry[J]. Rock and Mineral Analysis, 2009, 28(2): 143-146. |
[4] |
王世成, 王颜红, 刘艳辉, 等. 氢化物发生-原子荧光法测定鸭蛋中无机硒和有机硒[J]. 食品科学, 2013, 34(4): 183-185. Wang S C, Wang Y H, Liu Y H, et al. Determination of Inorganic and Organic Selenium in Duck Eggs by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Food Science, 2013, 34(4): 183-185. |
[5] |
Wei L, Gupta P, Hernandez R, et al. Determination of Ultratrace Selenium and Arsenic at Parts-per-Trillion Levels in Environmental and Biological Samples by Atomic Fluorescence Spectrometry with Flow Injection Hydride Generation Technique[J].Microchemical Journal, 1999, 62(1): 83-98. doi: 10.1006/mchj.1998.1698 |
[6] |
刘爽, 刘冬莲. 氢化物发生-原子吸收光谱法测定黄芪中硒[J]. 理化检验(化学分册), 2013, 49(1): 81-83. Liu S, Liu D L. HG-AAS Determination of Selenium in Astragalus[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(1): 81-83. |
[7] |
Maleki N, Safavi A, Doroodmand M M, et al. Determination of Selenium in Water and Soil by Hydride Generation Atomic Absorption Spectrometry Using Solid Reagents[J].Talanta, 2004, 66(4): 858-862. |
[8] |
汪李, 杨远, 易可慧, 等. 氢化物发生-电感耦合等离子体原子发射光谱法测定血样中硒含量[J]. 理化检验(化学分册), 2013, 49(3): 287-289. Wang L, Yang Y, Yi K H, et al. HG-ICP-AES Determination of Selenium in Blood Sample[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(3): 287-289. |
[9] |
辛仁轩. 等离子体发射光谱分析[M] . 北京: 化学工业出版社, 2005: 381-382. Xin R X. Plasma Emission Spectrum Analysis[M] . Beijing: Chemical Industry Press, 2005: 381-382. |
[10] |
杨金辉, 杨江柳, 胡鄂明, 等. 电感耦合等离子体发射光谱法(ICP-AES)测定铀矿石中微量钪、硒、铼[J]. 南华大学学报(自然科学版), 2004, 18(4): 83-85. Yang J H, Yang J L, Hu E M, et al. The Determination of Sc, Se and Re in Uranium Ore with ICP-AES[J]. Journal of Nanhua University (Science and Technology), 2004, 18(4): 83-85. |
[11] |
龚治湘, 麻映文. 微型氢化物发生原子吸收光谱法测定砂岩铀矿中微量硒[J]. 分析化学, 2005, 33(6): 831-834. Gong Z X, Ma Y W. Determination of Trace Selenium in Uranium Mineral by Hydride-Generation-Atomic Absorption Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2005, 33(6): 831-834. |
[12] |
贺攀红, 吴领军, 杨珍, 等. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞[J]. 岩矿测试, 2013, 32(2): 240-243. He P H, Wu L J, Yang Z, et al. Simultaneous Determination of Trace As, Sb, Bi and Hg in Soils by Hydride Generation-Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 240-243. |
[13] |
陈波, 刘洪青, 邢应香, 等. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J]. 岩矿测试, 2014, 33(2): 192-196. Chen B, Liu H Q, Xing Y X, et al. Simultaneous Determination of Ge, Se and Te in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 192-196. |
[14] |
李岩, 袁爱萍. 碱熔-氢化物发生原子荧光光谱法连续测定锑精矿中的砷铋硒锡[J]. 分析化学, 2008, 36(9): 273-276. Li Y, Yuan A P. Simultaneous Determination of As, Bi, Se and Sn in Antimony Concentrates by Hydride Generation-Atomic Fluorescence Spectrometry through Sodium Peroxide Melting[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9): 273-276. |
[15] |
傅慧敏, 周益奇, 王巧环, 等. 氢化物发生-电感耦合等离子体原子发射光谱法测定环境样品中痕量硒[J]. 理化检验(化学分册), 2015, 51(2): 157-159. Fu H M, Zhou Y Q, Wang Q H, et al. Determination of Trace Amount of Se in Environmental Samples by HG-ICP-AES[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(2): 157-159. |
[16] |
Pohl P, Zyrnicki W. Study of Chemical and Spectral Interferences in the Simultaneous Determination of As, Bi, Sb, Se and Sn by Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry[J].Analytica Chimica Acta, 2002, 468(1): 71-79. doi: 10.1016/S0003-2670(02)00602-5 |
[17] |
D'Ulivo A, Gianfranceschi L, Lampugnani L, et al. Masking Agents in the Determination of Selenium by Hydride Generation Technique[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2002, 57(12): 2081-2094. doi: 10.1016/S0584-8547(02)00166-0 |
[18] |
杨理勤. Fe3+、碲对硒的氢化物化学干扰机理的实验研究[J]. 光谱学与光谱分析, 1999, 19(6): 399-401. Yang L Q. Experimental Study on the Mechanism of Chemical Interference of Tellurium with Selenium by Hydride-AFS in the Presence of Fe3+[J].Spectroscopy and Spectral Analysis, 1999, 19(6): 399-401. |
[19] |
陶秋丽, 韩张雄, 熊英, 等. 微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒[J]. 岩矿测试, 2013, 32(3): 445-448. Tao Q L, Han Z X, Xiong Y, et al. Determination of Selenium in Coal Ash with Microwave Digestion and Hydride Generation-Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3): 445-448. |
[20] |
金未, 赵承易, 王水锋, 等. 氢化物发生-电感耦合等离子体原子发射光谱法测定环境样品中的痕量硒[J]. 北京师范大学学报(自然科学版), 2005, 41(4): 389-392. Jin W, Zhao C Y, Wang S F, et al. Determination of Trace Selenium in Environmental Samples by Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(4): 389-392. |
相似文献(共20条)
[1] |
林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152. |
[2] |
李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122. |
[3] | |
[4] | |
[5] |
贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243. |
[6] |
贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048 |
[7] |
杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148. |
[8] |
赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321. |
[9] |
周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216. |
[10] |
李淑娟, 于兆水, 张勤. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量铋. 岩矿测试, 2005, (3): 217-220. |
[11] |
范凡. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量碲. 岩矿测试, 2005, (3): 225-228. |
[12] |
吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006 |
[13] |
陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314. |
[14] |
李冰, 王小如. 乙醇增强氢化物发生电感耦合等离子体质谱法测定砷锑铋硒和碲的研究. 岩矿测试, 1999, (2): 101-110. |
[15] |
汤志勇, 敖愫. 碱性体系在线氢化物发生原子荧光光谱法测定铜矿石中痕量砷锑铋. 岩矿测试, 1998, (4): 285-289. |
[16] |
刘金巍, 刘雪松, 边超, 张涛, 张智印, 魏建朋. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒. 岩矿测试, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049 |
[17] |
王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290. |
[18] |
等, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278. |
[19] |
杨珍, 贺攀红, 张延玲, 孙银生, 荣耀, 张伟. 双毛细管在线干扰校正-电感耦合等离子体发射光谱法测定含铀地质样品中微量铅. 岩矿测试, 2015, 34(5): 528-532. doi: 10.15898/j.cnki.11-2131/td.2015.05.005 |
[20] |
付爱瑞, 陈庆芝, 罗治定, 姜云军, 金倩, 王芸. 碱熔-电感耦合等离子体发射光谱法测定大气颗粒物样品中无机元素. 岩矿测试, 2011, 30(6): 751-755. |
计量
- PDF下载量(15)
- 文章访问量(11358)
- HTML全文浏览量(302)
- 被引次数(0)