【引用本文】 陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005
CHEN Kang, JI Guang-xuan, ZHU You-feng, et al. Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202005060005

基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征

自然资源实物地质资料中心, 河北 三河 065201

收稿日期: 2020-04-28  修回日期: 2020-07-24  接受日期: 2020-09-19

基金项目: 中国地质调查局地质调查项目“实物地质资料汇集与服务”(DD20190411)

作者简介: 陈康, 硕士, 工程师, 从事实物地质资料开发与服务研究工作。E-mail:kangchen320@163.com

Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System

Core and Samples Center of Natural Resources, China Geological Survey, Sanhe 065201, China

Received Date: 2020-04-28
Revised Date: 2020-07-24
Accepted Date: 2020-09-19

摘要:铜矿床蚀变围岩与伴生矿体有着密切的成因与空间关系,通过分析铜矿床蚀变特征,可获得成矿时物理化学条件,热液中成矿元素的迁移、富集以及演化规律,最终指示铜矿床矿化富集程度以及矿体赋存位置。本文通过对城门山铜矿床外围铁路坎矿区的代表性岩心进行高光谱岩心扫描系统快速分析,结果显示在ZKJ9-7典型钻孔中,0~350m处以蒙脱石和碳酸盐典型光谱曲线为主;350~578m处以高岭土和白云母典型光谱曲线为主。通过矿物解译,自地表向下,城门山铁路坎矿区的矿物变化规律为:蒙脱石+高岭石→碳酸盐+蒙脱石→碳酸盐→白云母+高岭石+蒙脱石→白云母+高岭石+绿泥石。矿区浅部区域主要受花岗闪长斑岩体与碳酸盐类围岩之间的接触带构造控制;深部区域主要经历矽卡岩化和硅化,部分有绿泥石化,这些蚀变过程有利于铜矿的形成与富集。钻孔深部接触带两侧的岩石发生成分置换而形成矽卡岩,上升溶液沿着碳酸盐类接触面流动时,碳酸盐中的CaO通过粒间溶液,以上升溶液为媒介向硅铁质岩和硅铝质岩石方向扩散。相反,硅铁质岩和硅铝质岩中的FeO、Al2O3和SiO2以同样的方式向灰岩方向扩散,从而接触带两侧的岩石发生成分置换而形成矽卡岩。富铜矽卡岩型矿床的形成与溶液和岩石间的组分交换密切相关,组分的浓度差所引起的扩散作用在其中发挥了重要作用。

关键词: 铜矿, 高光谱, 蚀变矿物, 矽卡岩, 城门山

要点

(1) 采用高光谱岩心扫描系统直接获得城门山铁路坎铜矿床蚀变矿物的变化规律。

Study on Alteration Characteristics of the Chengmenshan Tielukan Copper Deposit by A Hyperspectral Core Scanning System

ABSTRACT

BACKGROUND:

The altered wall rocks of copper deposits and associated ore bodies have a close genetic and spatial relationship. By analyzing the alteration characteristics of copper deposits, the physical and chemical conditions of the mineralization, the migration, enrichment and evolution of ore-forming elements in the hydrothermal fluid can be obtained. The alteration features ultimately indicate the mineralization degree of the copper deposit and the location of the ore body. The hyperspectral core scanning system is a new type of technical testing method, developed in recent years. This article documents the first time of studying the representative cores from the Chengmenshan Tielukan copper deposit by the hyperspectral core scanning system. At the same time, altered minerals were analyzed by electron probe microanalysis (EMPA). Thus, further revealing the metallogenic mechanism of the Chengmenshan copper deposit.

OBJECTIVES:

To investigate the alteration features of the Chengmenshan Tielukan copper deposit and to understand the ore genesis.

METHODS:

Samples were analyzed by a hyperspectral core scanning system and electron probe microanalyzer.

RESULTS:

The results showed that in the typical borehole ZKJ9-7, the typical spectral curves of montmorillonite and carbonate were dominated at 0-350m, whereas the typical spectral curves of kaolin and muscovite were dominated at 350-578m. The mineral composition variation from the surface to the depth of the Tielukan region in the Chengmenshan copper deposit periphery was montmorillonite+kaolinite →carbonate+montmorillonite →carbonate →muscovite+kaolinite+montmorillonite →muscovite+kaolinite+chlorite.

CONCLUSIONS:

In the Tielukan region, the contact zone between the granodiorite porphyry and the carbonate wall rocks controls the superficial part, but in the deep part it has alteration processes such as skarnization, silicification and chloritization. These alteration processes will conduce to the formation and enrichment of the copper mine. The deep part of the drilling core also shows that rock component exchange occurred on both sides of the contact zone, resulting in the formation of the skarn in the deep part. When the ascending mineralized solution flows along the carbonate interface, CaO in carbonate diffuse to the ferrosilicon rock and aluminosilicon rock along with the intergranular solution. In contrast, FeO, Al2O3 and SiO2 in the ferrosilicon rock and aluminosilicon rock diffuse to limestone, and thus rock components exchange on both sides of the contact zone generating the skarn in the deep part. The formation of copper-rich skarn deposit is closely related to the components exchange between solution and rock. The diffusion effect caused by the concentration difference of the components plays an important role.

KEY WORDS: copper deposit, hyperspectral spectrum, altered minerals, skarn, Chengmenshan

HIGHLIGHTS

(1) The variations and compositions of altered minerals in the Chengmenshan Tielukan copper deposit were analyzed by a hyperspectral core scanning system for the first time.

本文参考文献

[1]

Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J].Economic Geology, 1970, 65: 373-408. doi: 10.2113/gsecongeo.65.4.373

[2]

杨金中, 方洪宾, 张玉君, 等. 中国西部重要成矿带遥感找矿异常提取的方法研究[J]. 国土资源遥感, 2003, (3): 50-53. doi: 10.3969/j.issn.1001-070X.2003.03.012

Yang J Z, Fang H B, Zhang Y J, et al. Remote sensing anomaly extraction in important metallogenic belts of western China[J].Remote Sensing for Land & Resources, 2003, (3): 50-53. doi: 10.3969/j.issn.1001-070X.2003.03.012

[3]

张玉君, 杨建民, 姚佛军, 等. 多光谱遥感技术预测矿产资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J]. 地学前缘, 2007, 14(5): 63-69. doi: 10.3321/j.issn:1005-2321.2007.05.007

Zhang Y J, Yang J M, Yao F J, et al. The potential of multi-spectral remote sensing techniques for mineral exploration-Taking the Mongolian Oyu Tolgoi Cu-Au deposit as an example[J].Earth Science Frontiers, 2007, 14(5): 63-69. doi: 10.3321/j.issn:1005-2321.2007.05.007

[4]

代晶晶, 王瑞江, 王润生, 等. 基于蚀变信息提取的西藏班公湖-怒江成矿带中段斑岩铜矿找矿预测[J]. 地球学报, 2012, 33(5): 755-762.

Dai J J, Wang R J, Wang R S, et al. Porphyry copper deposit prognosis in the middle part of the Bangong Co-Nujiang River metallogenic belt in Tibet based on alteration information extraction[J]. Acta Geoscientica Sinica, 2012, 33(5): 755-762.

[5]

Kruse F A. Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra[J].International Journal of Remote Sensing, 1996, 17(9): 1623-1632. doi: 10.1080/01431169608948728

[6]

Taylor G R. Mineral and lithology mapping of drill core pulps using visible and infrared spectrometry[J].Natural Resources Research, 2000, 9(4): 257-268. doi: 10.1023/A:1011501125239

[7]

张川, 叶发旺, 徐清俊, 等. 钻孔岩心高光谱技术系统及其在矿产勘查中的应用[J]. 地质科技情报, 2016, 35(6): 177-183.

Zhang C, Ye F W, Xu Q J, et al. Drill core hyperspectral technology system and its application in mineral prospecting[J]. Geological Science and Technology Information, 2016, 35(6): 177-183.

[8]

Michelle T, Benoit R, David G, et al. Automated drill core logging using visible and near-infrared reflectance spectroscopy:A case study from the Olympic Dam IOCG deposit, South Australia[J].Economic Geology, 2011, 106(2): 289-296. doi: 10.2113/econgeo.106.2.289

[9]

Michelle C T, Benoit R, David G, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 2013, 53(3): 26-38.

[10]

张杰林, 黄艳菊, 王俊虎, 等. 铀矿勘察钻孔岩心高光谱编录及三维矿物填图技术研究[J]. 铀矿地质, 2013, 29(4): 249-255. doi: 10.3969/j.issn.1000-0658.2013.04.009

Zhang J L, Huang Y J, Wang J H, et al. Hyperspectral drilling core logging and 3D mineral mapping technology for uranium exploration[J].Uranium Geology, 2013, 29(4): 249-255. doi: 10.3969/j.issn.1000-0658.2013.04.009

[11]

修连存, 郑志忠, 俞正奎, 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

Xiu L C, Zheng Z Z, Yu Z K, et al. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J].Acta Geologica Sinica, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

[12]

修连存, 郑志忠, 陈春霞, 等. 国外便携式近红外药品分析仪原理及其应用[J]. 现代科学仪器, 2008, (4): 120-123.

Xiu L C, Zheng Z Z, Chen C X, et al. Principle and application of domestic portable near infrared medicine analyzer[J]. Modern Scientific Instruments, 2008, (4): 120-123.

[13]

修连存, 郑志忠, 俞正奎, 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

Xiu L C, Zheng Z Z, Yu Z K, et al. Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J].Rock and Mineral Analysis, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

[14]

修连存, 郑志忠, 殷靓, 等. 岩心扫描仪光谱数据质量评估方法研究[J]. 光谱学与光谱分析, 2015, 35(8): 2352-2356. doi: 10.3964/j.issn.1000-0593(2015)08-2352-05

Xiu L C, Zheng Z Z, Yin L, et al. Research on assessment methods of & spectrum data quality of core scan[J].Spectroscopy and Spectral Analysis, 2015, 35(8): 2352-2356. doi: 10.3964/j.issn.1000-0593(2015)08-2352-05

[15]

蒙亚平, 杜培军, 李二珠, 等. 国产岩心光谱扫描仪CMS350A数据预处理技术[J]. 国土资源遥感, 2017, 29(4): 73-81.

Meng Y P, Du P J, Li E Z, et al. Data preprocessing methods of domestic core spectral scanner CMS350A[J]. Remote Sensing for Land & Resources, 2017, 29(4): 73-81.

[16]

赵瑞, 谢奕汉, 姚御元, 等. 城门山及武山铜矿床的硫同位素研究[J]. 地质学报, 1985, 59(3): 251-258.

Zhao R, Xie Y H, Yao Y Y, et al. Sulfur isotope study of the copper ore deposit of Chengmenshan and Wushan[J]. Acta Geologica Sinica, 1985, 59(3): 251-258.

[17]

孟良义, 黄恩邦. 城门山铜、钼矿床的稳定同位素地质[J]. 长春地质学院学报, 1988, 18(3): 269-276.

Meng L Y, Huang E B. The stable isotopic geology of copper, molybdenum ore deposits in Chengmenshan, Jiangxi[J]. Journal of Changchun University of Earth Science, 1988, 18(3): 269-276.

[18]

黄恩邦, 张迺堂, 罗钊生, 等. 城门山、武山铜矿床成因[J]. 矿床地质, 1990, 9(4): 291-300.

Huang E B, Zhang N T, Luo Z S, et al. The genesis of the Chengmenshan and Wushan copper deposits[J]. Mineral Deposits, 1990, 9(4): 291-300.

[19]

王忠玲. 江西城门山块状硫化物矿床地质特征及成因研究[J]. 地质找矿论丛, 1991, 6(1): 47-57.

Wang Z L. Genesis and geological features of Chengmenshan massive sulfide Cu, S ore deposit, Jiangxi Province[J]. Contributions to Geology and Mineral Resources Research, 1991, 6(1): 47-57.

[20]

贾伟. 江西城门山、武山矿区块状硫化物型铜矿成因新探讨[J]. 江西地质, 1999, 13(1): 33-37.

Jia W. A discussion on the genesis of the Chengmenshan and Wushan massive sulfide copper deposits in Jiangxi Province[J]. Jiangxi Geology, 1999, 13(1): 33-37.

[21]

王青华, 王润生, 郭小方, 等. 高光谱遥感技术在岩石识别中的应用[J]. 国土资源遥感, 2000, 12(4): 39-43. doi: 10.3969/j.issn.1001-070X.2000.04.008

Wang Q H, Wang R S, Guo X F, et al. Application for discrimination of rock using hyperspectral remote sensing technique[J].Remote Sensing for Land & Resources, 2000, 12(4): 39-43. doi: 10.3969/j.issn.1001-070X.2000.04.008

[22]

徐翠, 李林庆, 张洁, 等. X射线荧光光谱-电子探针在中酸性火山岩鉴定中的应用[J]. 岩矿测试, 2016, 35(6): 626-633.

Xu C, Li L Q, Zhang J, et al. Application of X-ray fluorescence spectrometry and electron microprobe in the identification of intermediate-felsic volcanic rocks[J]. Rock and Mineral Analysis, 2016, 35(6): 626-633.

[23]

罗建安, 杨国才. 江西城门山铜矿地质特征及矿床成因[J]. 矿产与地质, 2007, 21(3): 284-288. doi: 10.3969/j.issn.1001-5663.2007.03.014

Luo J A, Yang G C. Geological characteristics of Chengmenshan copper deposit, Jiangxi and its ore genesis[J].Mineral Resources and Geology, 2007, 21(3): 284-288. doi: 10.3969/j.issn.1001-5663.2007.03.014

[24]

李旭辉, 田九玲. 城门山铜矿地质特征及深部三维成矿预测[J]. 金属矿山, 2016, (6): 113-116. doi: 10.3969/j.issn.1001-1250.2016.06.023

Li X H, Tian J L. Geological characteristics and deep three-dimensional metallogenic prediction of Chengmengshan copper mine[J].Metal Mine, 2016, (6): 113-116. doi: 10.3969/j.issn.1001-1250.2016.06.023

[25]

李旭辉, 高任, 马立成, 等. 江西城门山矿田块状硫化物型矿体矿化分带特征[J]. 地质力学学报, 2016, 22(3): 794-802. doi: 10.3969/j.issn.1006-6616.2016.03.032

Li X H, Gao R, Ma L C, et al. Mineralization zonation of massive sulfide deposit in the Chengmenshan orefield, Jiangxi Province, China[J].Journal of Geomechanics, 2016, 22(3): 794-802. doi: 10.3969/j.issn.1006-6616.2016.03.032

[26]

吴俊华, 龚敏, 袁承先, 等. 江西城门山铜矿含矿斑岩体风化作用地球化学特征[J]. 矿床地质, 2010, 29(3): 501-509. doi: 10.3969/j.issn.0258-7106.2010.03.011

Wu J H, Gong M, Yuan C X, et al. Weathering geochemical characteristics of ore-bearing porphyry in Chengmenshan copper deposit, Jiangxi Province[J].Mineral Deposits, 2010, 29(3): 501-509. doi: 10.3969/j.issn.0258-7106.2010.03.011

[27]

吴俊华, 龚敏, 龚鹏, 等. 江西九江城门山铜矿三维地质地球化学特征与成矿预测[J]. 地质通报, 2010, 29(6): 925-932. doi: 10.3969/j.issn.1671-2552.2010.06.015

Wu J H, Gong M, Gong P, et al. 3D geological and geochemical features and metallogenic prognosis of Chengmenshan copper deposit, Jiujiang, Jiangxi, China[J].Geological Bulletin of China, 2010, 29(6): 925-932. doi: 10.3969/j.issn.1671-2552.2010.06.015

[28]

龚鹏, 龚敏, 熊燃, 等. 老矿区深部资源量预测的地球化学方法——以江西九江城门山铜矿深部铜资源量预测为例[J]. 地质通报, 2010, 29(2/3): 414-420.

Gong P, Gong M, Xiong R, et al. Resources prediction geochemical method in deep area for old orefield-A case study of Chengmenshan copper deposit about copper deep area resources prediction, Jiujiang County, Jiangxi Province, China[J]. Geological Bulletin of China, 2010, 29(2/3): 414-420.

[29]

方福康.江西城门山斑岩铜钼矿成矿流体研究[D].北京: 中国地质大学(北京), 2012.

Fang F K.Studies on the fluid inclusions of the Chengmenshan porphyry Cu-Mo deposit, Jiangxi Province[D].Beijing: China University of Geosciences (Beijing), 2012.

[30]

文春华, 徐文艺, 钟宏, 等. 九瑞矿集区城门山斑岩型钼铜矿床流体包裹体研究[J]. 地质学报, 2012, 86(10): 1604-1619. doi: 10.3969/j.issn.0001-5717.2012.10.005

Wen C H, Xu W Y, Zhong H, et al. Fluid inclusion study of the Chengmenshan porphyry Mo-Cu deposit in the Jiujiang-Ruichang district[J].Acta Geologica Sinica, 2012, 86(10): 1604-1619. doi: 10.3969/j.issn.0001-5717.2012.10.005

[31]

郭宇明, 胡基垣, 李超, 等. 城门山铜矿矿石矿物组成及矿物学特征[J]. 四川地质学报, 2018, 38(3): 427-430. doi: 10.3969/j.issn.1006-0995.2018.03.018

Guo Y M, Hu J H, Li C, et al. Ore mineral component and mineralogy of the Chengmenshan Cu deposit[J].Acta Geologica Sichuan, 2018, 38(3): 427-430. doi: 10.3969/j.issn.1006-0995.2018.03.018

相似文献(共20条)

[1]

迟广成, 宋丽华, 王娜, 崔德松, 周国兴. X射线粉晶衍射仪在山东蒙阴金伯利岩蚀变矿物鉴定中的应用. 岩矿测试, 2010, 29(4): 475-477.

[2]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[3]

吕书君, 杨富全, 柴凤梅, 张志欣, 李强. 新疆准噶尔北缘托斯巴斯套铁铜金矿床矽卡岩和磁铁矿矿物学特征及其地质意义. 岩矿测试, 2013, 32(3): 510-521.

[4]

张厚兰, 郭居媛. 原子荧光光谱法测定铜矿中硒和碲. 岩矿测试, 1993, (4): 287-289.

[5]

何炼. 原子荧光光谱法直接测定铜矿中的硒. 岩矿测试, 2004, (3): 235-237.

[6]

李文莉, 李刚. 氢化物-原子荧光法测定铜矿中微量硒和碲. 岩矿测试, 2002, (3): 223-226.

[7]

陈艳, 张招崇. 矽卡岩型铁矿的铁质来源与迁移富集机理探讨. 岩矿测试, 2012, 31(5): 889-897.

[8]

聂飞, 董国臣, 王霞, 朱华平. 太行山北段浮图峪矿田石榴子石环带特征研究. 岩矿测试, 2014, 33(3): 444-454.

[9]

张承帅, 李莉, 张长青. 福建马坑矽卡岩型铁(钼)矿床稀土元素地球化学及地质意义. 岩矿测试, 2013, 32(1): 145-156.

[10]

王智敏, 杨明华, 沈素眉, 郑云法. 1-(2,6-二溴-4-硝基苯)-3-(4-硝基苯)-三氮烯光度法测定铜. 岩矿测试, 2002, (2): 158-160.

[11]

孙龄高, 陈凯. 冷原子吸收法测定铜,铅和锌的精矿中的汞. 岩矿测试, 1997, (2): 153-154158.

[12]

吕宪俊, 范海宝, 邱俊, 张言贵, 曹旭. 胶东蚀变岩型金矿石工艺矿物学性质研究. 岩矿测试, 2012, 31(1): 184-188.

[13]

修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 近红外光谱仪测定岩石中蚀变矿物方法研究. 岩矿测试, 2009, 28(6): 519-523.

[14]

富公勤. 云英岩的蚀变类型、蚀变带序和成岩格子. 岩矿测试, 1985, (2): 103-108.

[15]

刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 2012, 31(6): 1067-1076.

[16]

郭东旭, 刘琰, 李自静, 孙东询, 王浩. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征. 岩矿测试, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003

[17]

刘亚非, 赵慧博, 高志文, 来志庆. 应用偏光显微镜和电子探针技术研究安徽铜官山矽卡岩型铜铁矿床伴生元素金银铂钯铀的赋存状态. 岩矿测试, 2015, 34(2): 187-193. doi: 10.15898/j.cnki.11-2131/td.2015.02.006

[18]

赵晨辉, 王成辉, 赵如意, 刘善宝, 饶娇萍, 刘武生, 张熊, 蒋金昌, 李挺杰. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义. 岩矿测试, 2020, 39(6): 908-920. doi: 10.15898/j.cnki.11-2131/td.202007310107

[19]

郭世勤. 红透山铜矿矿石变质的组构特征. 岩矿测试, 1984, (4): 330-336.

[20]

王祝, 邵蓓, 柳诚, 冯源强, 刘高令, 邬国栋, 李明礼. 电感耦合等离子体发射光谱法测定西藏矽卡岩型铜多金属富矿石中8种成矿元素. 岩矿测试, 2018, 37(2): 146-151. doi: 10.15898/j.cnki.11-2131/td.201712010188

计量
  • PDF下载量(8)
  • 文章访问量(467)
  • HTML全文浏览量(58)
  • 被引次数(0)
目录

Figures And Tables

基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征

陈康, 纪广轩, 朱有峰, 张华川