【引用本文】 熊茂富, 任敏, 杜伊, 等. 顶空固相微萃取-气相色谱-质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化[J]. 岩矿测试, 2019, 38(6): 724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016
XIONG Mao-fu, REN Min, DU Yi, et al. Simultaneous Determination of 12 Chloroanisoles in Lake Reservoir Waters by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 724-733. doi: 10.15898/j.cnki.11-2131/td.201901210016

顶空固相微萃取-气相色谱-质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化

1. 

首都师范大学资源环境与旅游学院, 北京 100048

2. 

水利部信息中心, 北京 100053

收稿日期: 2019-01-21  修回日期: 2019-06-10  接受日期: 2019-07-16

基金项目: 国家自然科学基金项目(21377168,41271495);北京市自然科学基金委员会-北京市教育委员会联合资助项目(KZ201810028047)

作者简介: 熊茂富, 硕士研究生, 环境科学专业。E-mail:15516186738@163.com

通信作者: 王晓燕, 教授, 主要从事非点源污染、环境微生物等方面研究。E-mail:wangxy@cnu.edu.cn

Simultaneous Determination of 12 Chloroanisoles in Lake Reservoir Waters by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry

1. 

College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China

2. 

Information Center of the Ministry of Water Resources, Beijing 100053, China

Corresponding author: WANG Xiao-yan, wangxy@cnu.edu.cn

Received Date: 2019-01-21
Revised Date: 2019-06-10
Accepted Date: 2019-07-16

摘要:氯苯甲醚类化合物(CAs)是地表水中普遍存在的嗅味物质,在世界各地水环境中均可发现CAs的存在,CAs易在食物链中富集和放大,且随着氯原子取代数增加其毒性逐渐增强。水体中CAs属于痕量物质,检测时需要先对其进行富集处理,以往研究大多是对单个物质进行检测。本文建立了采用顶空固相微萃取结合气相色谱-质谱联用技术同时测定湖库水中12种CAs的方法。对顶空固相微萃取过程中的萃取纤维、萃取温度、离子强度、萃取时间及搅拌速率等实验条件进行对比和优化,确认了最佳萃取条件为:萃取温度80℃,离子浓度0.35g/mL,萃取时间40min,搅拌速率1150r/min,样品体积10mL(15mL萃取瓶)。采用气相色谱-质谱选择性离子扫描方式进行定量分析,方法的线性范围为1~50ng/L,检出限为0.045~0.185ng/L,回收率为95.5%~115.1%,相对标准偏差≤ 13.02%。该方法相较于固相萃取及吹扫捕集法的检出限更低,对于样品浓度的变化感应度高,实验仪器的精密度优于其他方法。

关键词: 氯苯甲醚, 顶空固相微萃取, 气相色谱-质谱法, 萃取条件

要点

(1) 对湖库水中12种CAs进行同时萃取和检测。

(2) 采用顶空固相微萃取法富集水体中CAs,给出了各因素的最佳萃取条件。

(3) GC-MS对CAs的检出限更低,检测结果更准确。

Simultaneous Determination of 12 Chloroanisoles in Lake Reservoir Waters by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry

ABSTRACT

BACKGROUND:

Chloroanisoles (CAs) are odorous substances and can easily be found in surface waters. The CAs have been found in water environments worldwide. In the food chain, CAs are easily enriched and amplified. The toxicity increases with the number of chlorine atoms substituted. CAs in waters are trace substances which need to be preconcentrated before determination. Previous studies focused on the detection of individual substances.

OBJECTIVES:

To establish a method which combines headspace solid phase microextraction and gas chromatography-mass spectrometry together, to simultaneously measure 12 CAs in waters.

METHODS:

The conditions of extraction fiber, temperature, ionic strength, extraction time and stirring rate were compared and optimized in headspace solid phase microextraction. The optimal extraction conditions were confirmed by the results. Extraction temperature was 80℃, ionic strength was 0.35g/mL, extraction time was 40 minutes, stirring rate was 1150r/min, and sample volume was 10mL (15mL extraction bottle).

RESULTS:

Quantitative analysis was performed by gas chromatography-mass spectrometry with selective ion scanning. The linear ranges of the method were 1-50ng/L, and the recoveries were 95.5%-115.1%. The detection limits were 0.045-0.185ng/L and the relative standard deviation was less than 13.02%.

CONCLUSIONS:

Compared with the solid phase extraction and the purge with trap method, this method has a lower detection limit and higher sensitivity of the sample concentration. Also, the precision of the experimental instrument is relatively better than other methods.

KEY WORDS: chloroanisoles, headspace solid phase microextraction, gas chromatography-mass spectrometry, extraction conditions

HIGHLIGHTS

(1) 12 kinds of CAs in lake waters were extracted and detected simultaneously.

(2) The CAs in the waters were preconcentrated by headspace solid phase microextraction, and the optimal extraction conditions for each factor were given.

(3) GC-MS had lower detection limits for CAs and more accurate analytical results.

本文参考文献

[1]

Fischer C, Fischer U. Analysis of cork taint in wine and cork material at olfactory subthreshold levels by solid phase microextraction[J]. Journal of Agricultural & Food Chemistry, 1997, 45(6): 1995-1997.

[2]

Polásková P, Herszage J, Ebeler S E, et al. Wine flavor:Che-mistry in a glass[J].Chemical Society Reviews, 2008, 37(11): 2478-2489. doi: 10.1039/b714455p

[3] Ribéreau-Gayon P,Glories Y,Maujean A. Hand-book of Enology:The Chemistry of Wine Stabilization and Treatments[M] . New Jersey: John Wiley & Sons, 2006
[4]

Yu S, Xiao Q, Zhu B, et al. Gas chromatography-mass spectrometry determination of earthy-musty odorous compounds in waters by two phase hollow-fiber liquid-phase microextraction using polyvinylidene fluoride fibers[J]. Journal of Chromatography A, 2014, 1329(3): 45-51.

[5]

Nystrom A, Grimvall A, Krantzrulcker C, et al. Drinking-water off-flavor caused by 2, 4, 6-trichloroanisole[J].Water Science and Technology, 1992, 25(2): 241-249. doi: 10.2166/wst.1992.0058

[6]

毛敏敏, 张可佳, 张土乔, 等. 大体积浓缩-固相微萃取-气相色谱-质谱联用测定水样中6种典型嗅味物质[J]. 分析化学, 2013, 41(5): 760-765.

Mao M M, Zhang K J, Zhang S Q, et al. Determination of six typical taste and odor compounds using large volume voncentration, solid phase micro-extraction and gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(5): 760-765.

[7]

Pizarro C, Pérez-del-Notario N, Sáenz-Mateo A, et al. A simple and sensitive vortex assisted liquid-liquid microextraction method for the simultaneous determination of haloanisoles and halophenols in wines[J].Talanta, 2014, 128: 1-8. doi: 10.1016/j.talanta.2014.04.005

[8]

Prescott J, Norris L, Kunst M, et al. Estimating a "consumer rejection threshold" for cork taint in white wine[J].Food Quality and Preference, 2005, 16(4): 345-349. doi: 10.1016/j.foodqual.2004.05.010

[9]

任敏, 赵高峰, 王晓燕, 等. 环境中氯苯甲醚类污染物研究进展[J]. 环境工程技术学报, 2017, 7(3): 357-365. doi: 10.3969/j.issn.1674-991X.2017.03.050

Ren M, Zhao G F, Wang X Y, et al. Research progress of chloroanisoles pollutants in the environment[J].Journal of Environmental Engineering Technology, 2017, 7(3): 357-365. doi: 10.3969/j.issn.1674-991X.2017.03.050

[10]

Lu X, Fan C, Shang J, et al. Headspace solid-phase microextraction for the determination of volatile sulfur compounds in odorous hyper-eutrophic freshwater lakes using gas chromatography with flame photometric detection[J].Microchemical Journal, 2012, 104: 26-32. doi: 10.1016/j.microc.2012.04.001

[11]

Cheng Y, Ekker M, Chan H M, et al. Relative developmental toxicities of pentachloroanisole and pentachlorophenol in a zebrafish model (Danio Rerio)[J]. Ecotoxicology & Environmental Safety, 2015, 112: 7-14.

[12]

International Standard Organization.Cork Stoppers-Determination of Releasable 2, 4, 6-Trichloroanisole (TCA): ISO 20752-2007[S].Switzerland: ISO Copyright Office, 2007.

[13]

孙静, 王锐, 尹大强, 等. 顶空固相微萃取-气质联用法同时测定城市水源水中的九种嗅味物质[J]. 环境化学, 2016, 35(2): 280-286.

Sun J, Wang R, Yin D Q, et al. Simultaneous determination of nine taste and odor compounds in source water of Chinese cities by headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2016, 35(2): 280-286.

[14]

Bellar T A, Lichtenberg J J, Kroner R C, et al. The occurrence of organohalides in chlorinated drinking waters[J].Journal American Water Works Association, 1974, 66(12): 703-706. doi: 10.1002/j.1551-8833.1974.tb02129.x

[15]

王园园, 宋晓明, 温玉娟, 等. 固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究[J]. 岩矿测试, 2017, 36(5): 519-528.

Wang Y Y, Song X M, Wen Y J, et al. Determination of steroid estrogens in different water samples using SPE-derivatization coupled with GC-MS[J]. Rock and Mineral Analysis, 2017, 36(5): 519-528.

[16]

Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J].Analytical Chemistry, 1990, 62(19): 2145-2148. doi: 10.1021/ac00218a019

[17]

王丹华, 邢钧, 吴采樱, 等. 用自制新型端羟基冠醚固相微萃取涂层快速监测水中痕量多环芳烃[J]. 分析科学学报, 2003, 19(2): 109-112. doi: 10.3969/j.issn.1006-6144.2003.02.003

Wang D H, Xing J, Wu C Y, et al. Application of the novel benzon-15-crown-5 sol-gel coating for solid-phase microextraction in rapid determination of trace PAHs in water at nonequilibrium situatins[J].Journal of Analytical Science, 2003, 19(2): 109-112. doi: 10.3969/j.issn.1006-6144.2003.02.003

[18]

Kristiana I, Joll C, Heitz A, et al. Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2012, 1225(1): 45-54.

[19]

余胜兵, 朱炳辉, 许瑛华, 等. 顶空固相微萃取谱-气相色谱-质谱联用测定饮用水中6种致嗅化合物[J]. 分析试验室, 2013, 32(7): 58-62.

Yu S B, Zhu B H, Xu Y H, et al. Determination of six earthy musty odorous compounds in drinking water by headspace solid-phase microextraction coupled with gas chromatography-mass spectroscopy[J]. Chinese Journal of Analysis Laboratory, 2013, 32(7): 58-62.

[20]

Vestner J, Fritsch S, Rauhut D, et al. Development of a microwave assisted extraction method for the analysis of 2, 4, 6-trichloroanisole in cork stoppers by SIDA-SBSE-GC-MS[J].Analytica Chimica Acta, 2010, 660(1): 76-80.

[21]

Pizarro, Sáenz-González, Pérez-del-Notario, et al. Development of a dispersive liquid-liquid microextraction method for the simultaneous determination of the main compounds causing cork taint and brett character in wines using gas chromatography-tandem mass spectrometry[J].Journal of Chromato-graphy A, 2011, 1218(12): 1576-1584. doi: 10.1016/j.chroma.2011.01.055

[22]

Martínez-Uruñuela A, González-Sáiz J M, Pizarro C, et al. Optimisation of a headspace solid-phase microextraction method for the direct determination of chloroanisoles related to cork taint in red wine[J]. Journal of Chromatography A, 2004, 1056(1): 49-56.

[23]

Pizarro C, Pérez-del-Notario N, González-Sáiz J M, et al. Multiple headspace solid-phase microextraction for eliminating matrix effect in the simultaneous determination of haloanisoles and volatile phenols in wines[J]. Journal of Chromatography A, 2007, 1166(1): 1-8.

[24]

Yu S, Qin X, Zhu B, et al. Gas chromatography-mass spectrometry determination of earthy-musty odorous compounds in waters by two phase hollow-fiber liquid-phase microextraction using polyvinylidene fluoride fibers[J]. Journal of Chromatography A, 2014, 1329(3): 45-51.

[25]

Apostolou T, Pascual N, Marco M, et al. Extraction-less, rapid assay for the direct detection of 2, 4, 6-trichloroanisole (TCA) in cork samples[J].Talanta, 2014, 125: 336-340. doi: 10.1016/j.talanta.2014.03.023

[26]

Chen X, Luo Q, Yuan S, et al. Simultaneous determina-tion of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry[J].Journal of Environmetal Sciences, 2013, 25(11): 2313-2323. doi: 10.1016/S1001-0742(12)60290-3

[27]

高松, 邓银舟, 李玉芹, 等. 闭合超声循环吹扫针捕集动态提取-气相色谱法测定地下水中的4种有机磷农药[J]. 岩矿测试, 2015, 34(4): 480-486.

Gao S, Deng Y Z, Li Y Q, et al. Determination of organophosphorus pesticides in groundwater by gas chromatography coupled with closed ultrasound circulating purge needle trap[J]. Rock and Mineral Analysis, 2015, 34(4): 480-486.

[28]

徐洁, 鲜啟鸣. 气相色谱-质谱法分析某阻燃剂生产厂周边淡水鱼中的多溴联苯醚及其累积特征[J]. 岩矿测试, 2017, 36(4): 405-412.

Xu J, Xian Q M. Determination of polybrominated diphenyl ethers and bioaccumulation in freshwater fish surrounding a flame retardant manufacturing plant by gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 405-412.

[29]

Giansante L, di Vincenzo D, Bianchi G, et al. Classification of monovarietal Italian olive oils by unsupervised (PCA) and supervised (LDA) chemometrics[J].Journal of Science of Food and Agriculture, 2003, 83(9): 905-911. doi: 10.1002/jsfa.1426

[30]

Camino-Sánchez F J, Ruiz-García J, Zafra-Gómez A, et al. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air[J]. Journal of Chromatography A, 2013, 13(5): 259-266.

[31]

吴采樱. 固相微萃取[M] . 北京: 化学工业出版社, 2012: 85-107.

Wu C Y. Solid Phase Microextraction[M] . Beijing: Chemical Industry Press, 2012: 85-107.
[32]

魏魏, 郭庆园, 赵云云, 等. 顶空固相微萃取-气质联用法测定水中7种致嗅物质[J]. 中国给水排水, 2014, 30(18): 131-135.

Wei W, Guo Q Y, Zhao Y Y, et al. Simultaneous determination of seven fishy aldehydes in water samples using headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry[J]. China Water and Wastewater, 2014, 30(18): 131-135.

[33]

张哲琦, 牟德华, 李艳, 等. 优化GC检测2, 4, 6-三氯苯甲醚的萃取条件[J]. 食品工业科技, 2014, 35(24): 89-95.

Zhang Z Q, Mou D H, Li Y, et al. Optimization of extraction conditions of 2, 4, 6-trichloroanisole determination by gas chromatography[J]. Science and Technology of Food Industry, 2014, 35(24): 89-95.

[34]

徐振秋, 张晓赟, 徐恒省, 等. 顶空固相微萃取-气相色谱-质谱法测定饮用水中9种嗅味物质[J]. 化学分析计量, 2017, 26(2): 48-51. doi: 10.3969/j.issn.1008-6145.2017.02.013

Xu Z Q, Zhang X Z, Xu H S, et al. Detection of nine odor compounds in drinking water by headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J].Chemistry Analysis and Meterage, 2017, 26(2): 48-51. doi: 10.3969/j.issn.1008-6145.2017.02.013

[35]

Buchholz K D, Pawliszyn J. Optimization of solid-phase microextraction conditions for determination of phenols[J].Analytical Chemistry, 1994, 66(1): 160-167. doi: 10.1021/ac00073a027

[36]

Zalacain A, Alonso G L, Lorenzo C, et al. Stir bar sorptive extraction for the analysis of wine cork taint[J].Journal of Chromatography A, 2004, 1033(1): 173-178. doi: 10.1016/j.chroma.2003.12.059

[37]

宋荣娜, 杨晓芳, 吕明晗, 等. HS-SPME-GC/MS同时测定污废水中多种VOCs异味物质[J]. 环境化学, 2019, 38(5): 1047-1056.

Song R N, Yang X F, Lü M H, et al. Simultaneous determination of various odorous VOC substances in sewage wastewater by HSSPME-GC/MS[J]. Environmental Chemistry, 2019, 38(5): 1047-1056.

[38]

陈臣, 李艳, 牟德华, 等. 优化GC检测欧李酒香气成分的萃取条件[J]. 食品工业科技, 2014, 35(6): 81-86.

Chen C, Li Y, Mou D H, et al. Optimization extraction conditions for GC analysis of aromatic constituents in prunus humilis bunge wine[J]. Science and Technology of Food Industry, 2014, 35(6): 81-86.

[39]

范苓, 秦宏兵, 张晓赟, 等. 顶空固相微萃取-气相色谱/质谱法同时测定富营养化水体中9种异味物质[J]. 江南大学学报(自然科学版), 2014, 13(3): 355-359. doi: 10.3969/j.issn.1671-7147.2014.03.019

Fan L, Qin H B, Zhang X Z, et al. Determination of nine off-flavor compounds in water by gas chromatography-mas spectrometry with headspace solid phase micro-extraction[J].Journal of Jiangnan University (Natural Science Edition), 2014, 13(3): 355-359. doi: 10.3969/j.issn.1671-7147.2014.03.019

[40]

马康, 张金娜, 何雅娟, 等. 顶空固相微萃取-气质联用测定环境水样中7种痕量土霉味物质[J]. 分析化学, 2011, 39(12): 1823-1829.

Ma K, Zhang J N, He Y J, et al. Determination of seven musty odor compounds in water by gas chromatography mass spectrometry with headspace solid phase micro-extraction[J]. Chinese Journal of Analytical Chemistry, 2011, 39(12): 1823-1829.

[41]

Whitfield F B, Hill J L, Shaw K J, et al. 2, 4, 6-tribromoani-sole:A potential cause of mustiness in packaged food[J].Journal of Agricultural and Food Chemistry, 1997, 45(3): 889-893. doi: 10.1021/jf960587u

[42]

赵英莲, 牟德华, 李艳, 等. 顶空固相微萃取联合气相色谱-质谱检测葡萄酒中2, 4, 6-三氯苯甲醚[J]. 食品科学, 2016, 37(10): 219-225. doi: 10.7506/spkx1002-6630-201610038

Zhao Y L, Mou D H, Li Y, et al. Optimization of headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the determination of 2, 4, 6-trichloroanisole in wine[J].Food Science, 2016, 37(10): 219-225. doi: 10.7506/spkx1002-6630-201610038

[43]

齐美玲. 气相色谱分析及应用[M] . 北京: 科学出版社, 2012

Qi M L. Gas Chromatography Analysis and Application[M] . Beijing: Science Press, 2012
[44]

沈斐, 苏晓燕, 许燕娟, 等. 吹扫捕集-GC/MS法测定饮用水中致嗅物质[J]. 环境监测管理与技术, 2010, 22(5): 31-35. doi: 10.3969/j.issn.1006-2009.2010.05.008

Shen F, Su X Y, Xu Y J, et al. Determination of odor materials in drinking water by GC/MS with purge and trap[J].The Administration and Technique of Environmental Monitoring, 2010, 22(5): 31-35. doi: 10.3969/j.issn.1006-2009.2010.05.008

[45]

唐熙, 梁鸣, 李小晶, 等. 气相色谱-质谱法测定软木塞中2种霉味物质[J]. 色谱, 2012, 30(7): 733-737.

Tang X, Liang M, Li X J, et al. Determination of two mouldy compounds in cork by gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2012, 30(7): 733-737.

相似文献(共20条)

[1]

张媛, 吴淑琪, 张月琴, 张淑芬. 以苯类化合物表征固相微萃取纤维头的萃取特性. 岩矿测试, 2005, (2): 97-101.

[2]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

赖永忠. 顶空进样-固相微萃取测定饮用水源水中吡啶. 岩矿测试, 2011, 30(5): 596-600.

[5]

陈卫明, 李庆霞, 张芳, 何小辉, 张勤. 加速溶剂萃取-气相色谱/气相色谱-质谱法测定土壤中7种多氯联苯. 岩矿测试, 2011, 30(1): 33-39.

[6]

李俊, 肖雅雯, 王震, 赵为武. 加速溶剂萃取-气相色谱/质谱法同时测定土壤中拟除虫菊酯类等18种农药残留. 岩矿测试, 2011, 30(5): 590-595.

[7]

王园园, 宋晓明, 温玉娟, MuhammadAdeel, 杨悦锁, 宋伟. 固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究. 岩矿测试, 2017, 36(5): 519-528. doi: 10.15898/j.cnki.11-2131/td.201705310092

[8]

孙书堂, 严倩, 黎宁, 黄理金, 帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014

[9]

汪雨, 刘聪, 陈舜琮, 武彦文. 气相色谱-质谱法初步鉴定不同品质的麝香. 岩矿测试, 2011, 30(1): 59-62.

[10]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[11]

赖永忠, 季彦鋆. 气相动态顶空进样-气相色谱-质谱法同时分析饮用水源水中57种挥发性有机物. 岩矿测试, 2012, 31(5): 877-883.

[12]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[13]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[14]

史双昕, 卢婉云, 邵丁丁, 张烃, 黄业茹. 气相色谱-质谱法分析土壤中十溴联苯醚. 岩矿测试, 2008, 27(4): 274-278.

[15]

刘清辉, 曹攽, 马军, 李云木子. 气相色谱-质谱法测定水中8种多氯联苯. 岩矿测试, 2010, 29(5): 523-526.

[16]

张永涛, 张莉, 张琳. 短程选择离子扫描气相色谱-质谱法检测水中15种半挥发性有机物. 岩矿测试, 2008, 27(6): 401-404.

[17]

贾静, 饶竹. 吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物. 岩矿测试, 2008, 27(6): 413-417.

[18]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[19]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[20]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

计量
  • PDF下载量(14)
  • 文章访问量(406)
  • HTML全文浏览量(133)
  • 被引次数(0)
目录

Figures And Tables

顶空固相微萃取-气相色谱-质谱联用法同时测定湖库水中12种氯苯甲醚的条件优化

熊茂富, 任敏, 杜伊, 赵高峰, 王晓燕