【引用本文】 肖细炼, 王亚夫, 张春林, 等. 交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116
XIAO Xi-lian, WANG Ya-fu, ZHANG Chun-lin, et al. Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 699-708. doi: 10.15898/j.cnki.11-2131/td.201908020116

交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究

1. 

中国地质调查局武汉地质调查中心, 湖北 武汉 430205

2. 

中南地质科技创新中心, 湖北 武汉 430205

收稿日期: 2019-08-02  修回日期: 2019-11-08  接受日期: 2020-04-18

基金项目: 中国地质调查局地质调查项目(121201009000150002)

作者简介: 肖细炼, 硕士, 工程师, 主要从事地球化学分析方面的研究工作。E-mail:xiaoxilianezhou@126.com

Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry

1. 

Wuhan Center of China Geological Survey, China Geological Survey, Wuhan 430205, China

2. 

Central South China Innovation Center for Geosciences, Wuhan 430205, China

Received Date: 2019-08-02
Revised Date: 2019-11-08
Accepted Date: 2020-04-18

摘要:银硼锡元素的丰度和变化特征可以反映区域成矿条件,指示矿床或矿化存在。碳酸盐矿物中的银硼锡是勘查地球化学及多目标地球化学中的必测元素,其测定方法是地球化学元素配套分析方案中必不可少的方法之一。由于碳酸盐矿物与普通的岩石、土壤和水系沉积物不同,该类矿物主要是灰岩、白云岩等含钙和镁元素比较高的岩石类样品,同时测定样品中银硼锡的技术难点在于高含量钙镁基体会严重干扰低含量待测元素,且摄谱过程中由于易产生二氧化碳造成样品飞溅。针对碳酸盐矿物的特殊性,本文建立了交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的分析方法。通过优化样品前处理及实验条件,用10%的盐酸处理样品,消除了基体元素钙和镁的干扰;以锗(Ge)作为内标元素进行定量,可以消除因电弧激发条件变化以及试样基体组分等外部因素造成干扰的影响;采用银与长波锗元素组成分析线对,硼和锡与短波锗元素组成分析线对,灵敏度较好;选择天然碳酸盐岩石与人工合成灰岩等12种国家一级地球化学标准物质作为标准系列,使基体组分与样品相类似;采用分析线和内标线同时扣背景的离线差减法进行背景校正。结果表明:该方法对银硼锡的检出限分别为0.008、0.49、0.18μg/g;方法精密度(RSD)对银大于10%,其余均优于10%;经国家一级地球化学标准物质验证,银硼锡测定平均值与认定值的对数差值(△lgC)均小于或等于±0.05,满足多目标区域地球化学调查规范的要求。

关键词: 碳酸盐矿物, , , , 盐酸处理, , 交流电弧-光电直读发射光谱法

要点

(1) 在样品前处理中加入10%的盐酸,解决了基体元素干扰问题。

(2) 锗元素作为内标元素进行定量,消除了外部因素干扰影响。

(3) 离线差减法背景校正解决了背景干扰问题。

Simultaneous Determination of Silver, Boron and Tin in Carbonate Minerals by Alternating Current-Arc Optoelectronic Direct Reading-Emission Spectrometry

ABSTRACT

BACKGROUND:

The abundances and variation characteristics of silver, boron and tin reflect the regional metallogenic conditions and indicate the existence of deposits or mineralization. Silver, boron and tin in carbonate minerals are elements that must be determined in exploration geochemistry and multi-objective geochemistry. The analytical method was one of the essential methods in the matching analysis scheme of geochemical elements. Because carbonate minerals are different from common rocks, soils and water-based sediments, these minerals are mainly limestone, dolomite and other rock samples with relatively high calcium and magnesium elements, and the technical difficulty in determining silver, boron and tin in these samples is that the high content of calcium and magnesium matrix will seriously disturb the elements with low contents to be measured, and the sample is easily contaminated due to carbon dioxide during the spectrum recording process.

OBJECTIVES:

To solve the problems of rapid and accurate determination of silver, boron and tin in carbonate minerals.

METHODS:

In view of the particularity of carbonate minerals, an analytical method for the simultaneous determination of silver, boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-optical spectrometry (AC-Arc-OES) was established.

RESULTS:

By using 10% hydrochloric acid to digest the sample, the interference of matrix elements, calcium and magnesium, was eliminated. Germanium was used as the internal standard element for quantitative analysis, which eliminated the influence of external factors, such as the change of arc excitation conditions and matrix composition of the sample. The silver element and the long wave germanium element were used to form the analysis line pair, and the boron and tin element and the short wave germanium element were used to form the analysis line pair with good sensitivity. Twelve national geochemical reference materials, such as natural carbonate rock and synthetic limestone, were selected as the standard series. The matrix components were similar to those of the samples. The method of off-line subtraction was used to correct the background. The detection limits of the method for silver, boron and tin were 0.008μg/g, 0.49μg/g and 0.18μg/g, respectively. The precision of the method was larger than 10% for silver, and that of other elements was better than 10%. The accuracy of the method was verified by the national level geochemical reference materials, and the logarithm difference between the average value and the certified value of the reference materials was less than or equal to ±0.05.

CONCLUSIONS:

This method was used to solve the problem of rapid determination of silver, boron and tin in carbonate minerals. It is simple and fast, and suitable for the determination of a large numbers of samples. All of the technical indices of the method meet the requirements of multi-objective regional geochemical survey specifications.

KEY WORDS: carbonate minerals, silver, boron, tin, hydrochloric acid treatment, germanium, alternating current-arc optoelectronic direct reading-emission spectrometry

HIGHLIGHTS

(1) 10% hydrochloric acid was added during sample pretreatment to solve the interference problem of matrix elements.

(2) Germanium was used as the internal standard element for quantitative analysis to eliminate the interference of external factors.

(3) The off-line subtraction background correction method solved the problem of background interference.

本文参考文献

[1]

赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, (2): 252-261.

Zhao B, Zhang D H, Yu L, et al. From clark values to elemental geochemical properties or behaviors, and to mineralization[J]. Bulletin of Mineralogy, Petroloy and Geochemisty, 2014, (2): 252-261.

[2]

李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293.

Li H, Zhang G Y, Yu B, et al. Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293.

[3]

张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 5(3): 292-297.

Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 5(3): 292-297.

[4]

陈郑辉, 王登红, 盛继福, 等. 中国锡矿成矿规律概要[J]. 地质学报, 2015, 89(6): 1026-1037.

Chen Z H, Wang D H, Sheng J F, et al. The metallogenic regularity of tin deposits in China[J]. Acta Geologica Sinica, 2015, 89(6): 1026-1037.

[5]

《岩石矿物分析》编委会. 岩石矿物分析[M] (第四版第四分册) . 北京: 地质出版社, 2011: 781-787.

The editorial committee of Rock and Mineral Analysis . Rock and mineral analysis[M] (The fourth editionVol.Ⅳ) . Beijing: Geological Publishing House, 2011: 781-787.
[6]

叶家瑜,江宝林. 区域地球化学勘查样品分析方法[M] . 北京: 地质出版社, 2004: 220-226.

Ye J Y,Jiang B L. Regional geochemical exploration sample analysis method[M] . Beijing: Geological Publishing House, 2004: 220-226.
[7]

Eggin S M, Woodhead J D, Kinslet L, et al. A sample method for the precise analysis determination of ≥ 40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1996, 134: 311-326.

[8]

胡圣虹, 陈爱芳, 林守麟, 等. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J]. 地球科学——中国地质大学学报, 2000, 25(2): 186-190.

Hu S H, Chen A F, Lin S L, et al. ICP-MS analytical research into 40 trace and ultra-trace elements in geological samples[J]. Earth Science-Journal of China University of Geosciences, 2000, 25(2): 186-190.

[9]

Ralf M, Jürgen H, Heike T, et al. Multielement trace determination in SiC powders:Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV-ICP-OES and DC arc OES[J].Analytical and Bioanalytical Chemistry, 2005, 383: 1060-1074. doi: 10.1007/s00216-005-3415-x

[10]

王艳君, 蒋晓光, 张彦甫, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定铜磁铁矿中铜、锰、铝、钙、镁、钛和磷的含量[J]. 中国无机分析化学, 2015, 5(3): 64-69.

Wang Y J, Jiang X G, Zhang Y F, et al. Determination of Cu, Mn, Al, Ca, Mg, Ti and P in copper magnetite by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3): 64-69.

[11]

石华, 陶莉萍, 安国荣, 等. 电感耦合等离子体发射光谱(ICP-AES)碳酸盐型石墨中硅、铁、铝等9种元素[J]. 中国无机分析化学, 2016, 6(1): 59-61.

Shi H, Tao L P, An G R, et al. Determination of nine elements in carbonate graphite ores by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 59-61.

[12]

张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定化探样品中主、次和痕量组分[J]. 理化检验(化学分册), 2005, 41(8): 547-552.

Zhang Q, Fan S Z, Pan Y S, et al. X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8): 547-552.

[13]

张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11): 51-57.

Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major, minor and trace elements in soil and stream sediment samples[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11): 51-57.

[14]

童晓民, 王楠, 董再蒸, 等. 低稀释比熔片X射线荧光法分析钼精矿中主次微量元素[J]. 分析试验室, 2019, 38(3): 369-373.

Tong X M, Wang N, Dong Z Z, et al. X-ray fluorescence analysis of major minor and minim elements in molybdenum concentrates using fused glass disc method with low dilution ratio[J]. Chinese Journal of Analysis Laboratory, 2019, 38(3): 369-373.

[15]

王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367-373.

Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367-373.

[16]

Flórián K, Fischer W, Nickel H, et al. Direct solid sample analysis of SiC-powders by DC glow discharge and DC-arc emission spectroscopy[J].Fresenius Journal of Analytical Chemistry, 1994, 349: 174-175. doi: 10.1007/BF00323259

[17]

Tibor K, Jürgen H, Otto F, et al. Determination of trace metals in industrial boron carbide by solid sampling optical emission spectrometry.Optimization of DC arc excitation (current, atmosphere and chemical modifier)[J]. Microchimica Acta, 2007, 156: 231-243.

[18]

刘江斌, 武永芝. 原子发射光谱法快速测定矿石中锡[J]. 冶金分析, 2013, 33(3): 65-68.

Liu J B, Wu Y Z. Rapid determination of tin in ore by atomic emission spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 65-68.

[19]

姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124-3127.

Yao J Z, Hao Z H, Tang R L, et al. Determination of high content of tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124-3127.

[20]

余宇, 和振云, 毛振才, 等. 交流电弧发射光谱的不同灵敏度谱线测定锡[J]. 岩矿测试, 2013, 32(1): 44-47.

Yu Y, He Z Y, Mao Z C, et al. Determination of tin by spectral lines with different sensitivity of alternating current arc emission spectroscopy[J]. Rock and Mineral Analysis, 2013, 32(1): 44-47.

[21]

朱英. 改进电极发射光谱法测定地球化学样品中Ag、B、Sn[J]. 资源环境与工程, 2007, 21(4): 489-491.

Zhu Y. Measuring Ag, B, Sn in the geochemical sample based on modified electrode emission spectra method[J]. Resources Environment & Engineering, 2007, 21(4): 489-491.

[22]

胡跃波, 石亚萍, 李蓓, 等. 交流电弧原子发射光谱法测定地质样品中的微量银[J]. 理化检验(化学分册), 2015, 51(10): 1414-1417.

Hu Y B, Shi Y P, Li B, et al. Determination of trace silver in geological samples by AC-AES[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(10): 1414-1417.

[23]

辛文芳. 交流电弧原子发射光谱法测定锶矿石中银[J]. 冶金分析, 2016, 36(8): 56-59.

Xin W F. Determination of silver in strontium ore by alternating current Arc atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(8): 56-59.

[24]

张庆华, 万飞, 杨婷, 等. 发射光谱深孔大电极法测定硼、锡、银[J]. 吉林地质, 2009, 28(2): 110-112.

Zhang Q H, Wan F, Yang T, et al. Determination of boron, tin and silver by emission spectroscopy deep hole, large electrode method[J]. Jilin Geology, 2009, 28(2): 110-112.

[25]

郑瑞华. 水平电极发射光谱法测定多目标生态地球化学土壤样品中的银[J]. 福建分析测试, 2007, 16(3): 38-41.

Zheng R H. Determination of silver in multi-purposes eco-geochemistry soil samples by level electrode emission spectrometry[J]. Fujian Analysis and Testing, 2007, 16(3): 38-41.

[26]

丁春霞, 王琳, 孙慧莹, 等. 发射光谱法测定生态地球化学调查样品中的银锡硼[J]. 黄金, 2012, 33(10): 55-58.

Ding C X, Wang L, Sun H Y, et al. Determination of sliver, tin and boron in ecological geochemistry samples by emission spectrometry[J]. Gold, 2012, 33(10): 55-58.

[27]

吴葆存. 发射光谱法测定碳酸盐岩矿样品中的银、锡、硼[J]. 黄金, 2003, 24(11): 46-47.

Wu B C. Determination of silver, tin and boron in carbonate rock ore sample by atomic emission spectrometry (AES)[J]. Gold, 2003, 24(11): 46-47.

[28]

张文华, 张芳. 发射光谱法测定碳酸盐岩石样品中8个痕量元素[J]. 岩矿测试, 1995, 14(1): 37-40.

Zhang W H, Zhang F. Determination of 8 trace elements in carbonate rock samples by emission spectrometry[J]. Metallurgical Analysis, 1995, 14(1): 37-40.

[29]

郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-ARC-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527-533.

Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of trace boron, molybdenum, silver, tin, lead in geochemical samples by direct current arc of full spectrum direct reading atomic emission spectroscopy (DC-ARC-AES)[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527-533.

[30]

李小辉. 交流电弧直读原子发射光谱法快速测定钼矿石中的银[J]. 理化检验(化学分册), 2017, 53(6): 716-718.

Li X H. Rapid determination of silver in molybdenum ore by AC direct reading atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6): 716-718.

[31]

肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32.

Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32.

相似文献(共19条)

[1]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[2]

林立, 周谙非, 张曼玲, 田艳玲, 杨彦丽. 微波消解-电感耦合等离子体发射光谱法分析食品中的总硼. 岩矿测试, 2008, 27(1): 21-24.

[3]

曹成东, 魏轶, 刘江斌. 发射光谱法同时测定地球化学样品中微量银铍硼锡铋钼. 岩矿测试, 2010, 29(4): 458-460.

[4]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[5]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[6]

张雪梅, 张勤. 发射光谱法测定勘查地球化学样品中银硼锡钼铅. 岩矿测试, 2006, 25(4): 323-326.

[7]

王烨, 赵淑杰, 李滦宁. 发射光谱载体蒸馏法测定地质样品中微量硼铍锡银. 岩矿测试, 2004, (1): 30-32.

[8]

阳国运, 唐裴颖, 张洁, 战大川, 覃盛, 何雨珊. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

[9]

叶晨亮. 发射光谱法快速测定银锡铜铅锌钼铍. 岩矿测试, 2004, (3): 238-240.

[10]

袁玄晖, 吴列平. 不同氢化反应条件下原子发射光谱同时测定锗锡砷锑铋. 岩矿测试, 1999, (3): 220-224.

[11]

李志良, 李梦龙. 卡尔曼滤波用于钼钨锡锗的同时光度测定. 岩矿测试, 1989, (4): 241-244.

[12]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[13]

马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247.

[14]

张旺强, 王春妍, 陈月源, 巨力佩, 李瑞仙. 高氯酸-盐酸体系-火焰原子吸收光谱法测定铅精粉中的银. 岩矿测试, 2010, 29(6): 707-710.

[15]

刘高令, 姜贞贞, 吴文清, 王祝, 邵蓓, 邬国栋, 李明礼. 盐酸介质下火焰原子吸收光谱法测定铅精粉中的高含量银. 岩矿测试, 2016, 35(6): 621-625. doi: 10.15898/j.cnki.11-2131/td.2016.06.008

[16]

李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034

[17]

朱玉伦, 戴莺. 硼特效树脂分离分光光度法测定岩石矿物中痕量硼. 岩矿测试, 1989, (3): 204-207.

[18]

余宇, 和振云, 毛振才, 魏轶, 袁秀茹, 刘江斌. 交流电弧发射光谱的不同灵敏度谱线测定锡. 岩矿测试, 2013, 32(1): 44-47.

[19]

宋继芳. 电感耦合等离子体发射光谱法测定油田水中的硼. 岩矿测试, 2012, 31(4): 613-616.

计量
  • PDF下载量(38)
  • 文章访问量(593)
  • HTML全文浏览量(171)
  • 被引次数(0)
目录

Figures And Tables

交流电弧-光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究

肖细炼, 王亚夫, 张春林, 杨小丽