【引用本文】 朱碧, 朱志勇, 吕苗, 等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003
ZHU Bi, ZHU Zhi-yong, LÜ Miao, et al. Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

Iolite软件处理LA-ICP-MS线扫描数据适用性研究

1. 

河海大学地球科学与工程学院同位素水文所, 江苏 南京 210098

2. 

南京大学内生金属矿床成矿机制研究国家重点实验室, 江苏 南京 210046

3. 

中国科学院南京地质古生物研究所现代古生物学和地层学国家重点实验室, 江苏 南京 210008

收稿日期: 2016-08-08  修回日期: 2016-12-31  接受日期: 2017-01-18

基金项目: 国家自然科学基金青年基金资助项目(41302018);教育部博士点基金“三峡地区埃迪卡拉系富有机质岩Re-Os同位素年代学研究(20130094120008);油气资源与探测国家重点实验室开放课题(PRP/open-1305)

作者简介: 朱碧, 博士, 助理研究员, 从事地球化学以及古海洋学研究。E-mail:njuzhubi@gmail.com。

Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis

1. 

Institute of Isotope Hydrology, School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

2. 

State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210046, China

3. 

State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

Received Date: 2016-08-08
Revised Date: 2016-12-31
Accepted Date: 2017-01-18

摘要:LA-ICP-MS分析技术是获取矿物/岩石内部的元素和同位素成分变化的重要手段。在利用该技术对地质样品进行线/面扫描时,仪器输出的初始数据量远远大于点分析,数据的处理和计算是一个关键问题。本文以磷质结核样品为例,阐述了利用Iolite软件进行元素线扫描数据计算的主要过程,包括背景信号的扣除、标准物质信号的拟合、线分析数据的导出等。借助软件自带的分段导出功能,对不同时间和空间分辨率下采集数据得到的结果进行了比较。研究表明Iolite能有效处理线分析数据,分析结果与前人用传统化学全岩法测定得到的元素含量范围相当。对比不同空间分辨率下(10 μm、50 μm、100 μm)获取的数据发现:相对于选用的束斑直径(40 μm),在分辨率过小(10 μm)或过大(100 μm)的条件下获得的数据存在数据波动大以及细节不足等缺陷;而当分辨率(50 μm)与选用的束斑直径接近时,数据质量得到最大优化。本研究展示了Iolite软件在处理线扫描数据方面具有很好的应用前景,通过分辨率的选取可实现数据的优化。

关键词: LA-ICP-MS, Iolite软件, 线扫描分析, 磷质结核, 空间分辨率

Application of Iolite in Data Reduction of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line-scan Analysis

KEY WORDS: LA-ICP-MS, Iolite software, line analysis, phosphate nodule, spatial resolution

本文参考文献

[1]

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58: 3863-3878. doi: 10.1007/s11434-013-5901-4

[2]

李秋立, 杨蔚, 刘宇, 等. 离子探针微区分析技术及其在地球科学中的应用进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 310-327.

Li Q L, Yang W, Liu Y, et al. Ion microprobe microanalytical techniques and their applications in earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 310-327.

[3]

李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学 (地球科学), 2015, 45(9): 1359-1382. doi: 10.1360/zd2015-45-09-1359

Li J H, Pan Y X. Applications of transmission electron microscopy in the earth sciences[J].Scientia Sinica Terrae, 2015, 45(9): 1359-1382. doi: 10.1360/zd2015-45-09-1359

[4]

秦玉娟, 张天付, 胡圆圆, 等. 电子探针背散射电子图像在碳酸盐岩微区分析中的意义[J]. 电子显微学报, 2013, 32(6): 479-484.

Qin Y J, Zhang T F, Hu Y Y, et al. The significance of a back-scattered electron image (of EPMA) in micro-area analyses of carbonate rocks[J]. Journal of Chinese Electron Microscopy Society, 2013, 32(6): 479-484.

[5]

李冰, 周剑雄, 詹秀春, 等. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878-1916.

Li B, Zhou J X, Zhan X C, et al. Modern instrumental analysis of inorganic multi-elements[J]. Acta Geologica Sinica, 2011, 85(11): 1878-1916.

[6]

梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试, 2015, 34(2): 201-206.

Liang S T, Liu Y C, Liu Z, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206.

[7]

王坤阳, 徐金沙, 饶华文, 等. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用[J]. 岩矿测试, 2013, 32(6): 924-930.

Wang K Y, Xu J S, Rao H W, et al. Application of SEM and EDS for phase characteristics analysis of platinoid mineral in the Danba area[J]. Rock and Mineral Analysis, 2013, 32(6): 924-930.

[8]

Agangi A, Przybyłowicz W, Hofmann A, et al. Trace element mapping of pyrite from Archean gold deposits-A comparison between PIXE and EPMA[J].Nuclear Instruments & Methods in Physics Research, 2015, 348: 302-306.

[9]

李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析[J]. 中国科学 (地球科学), 2015, 45(9): 1294-1303.

Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J]. Science China (Earth Sciences), 2015, 45(9): 1294-1303.

[10]

Woodhead J D, Hellstrom J, Hergt J M, et al. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2007, 31(4): 331-343.

[11]

Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1-2): 47-69. doi: 10.1016/j.chemgeo.2004.06.017

[12]

Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:Methods of quantification[J].Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2

[13]

徐伟彪. 离子探针测试方法及其在矿物微区微量元素和同位素分析中的应用[J]. 高校地质学报, 2005, 11(2): 239-252.

Xu W B. Ion microprobe:Techniques and applications in cosmochemistry and geochemistry[J]. Geological Journal of China Universities, 2005, 11(2): 239-252.

[14]

Riches A J V, Ickert R B, Pearson D G, et al. In situ oxygen-isotope, major-, and trace-element constraints on the metasomatic modification and crustal origin of a diamondiferous eclogite from roberts victor, Kaapvaal craton[J].Geochimica et Cosmochimica Acta, 2016, 174(4): 345-359.

[15]

Liu Y, Li Q L, Tang G Q, et al. Towards higher precision SIMS U-Pb zircon geochronology via dynamic multi-collector analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(4): 979-985. doi: 10.1039/C4JA00459K

[16]

袁静, 罗立强. 同步辐射微区X射线荧光和吸收谱技术在大气、土壤和动植物分析中的应用[J]. 核技术, 2014, 37(8): 1-11.

Yuan J, Luo L Q. Synchrotron P-XRF and XAFS in element distribution and speciation of air, soil and biological samples[J]. Nuclear Techniques, 2014, 37(8): 1-11.

[17]

Chang Z, Vervoort J D, Mcclelland W C, et al. U-Pb dating of zircon by LA-ICP-MS[J].Geochemistry, Geophysics, Geosystems, 2006, 7(5): 145-162.

[18]

Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003

[19]

Frei D, Gerdes A. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS[J].Chemical Geology, 2009, 261(3-4): 261-270. doi: 10.1016/j.chemgeo.2008.07.025

[20]

Solari L A, Gómez-Tuena A, Bernal J P, et al. U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation:Achievements in precision and accuracy[J]. Geostandards & Geoanalytical Research, 2010, 34(34): 5-18.

[21]

Woodhead J, Hergt J, Meffre S, et al. In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS[J].Chemical Geology, 2009, 262(3-4): 344-354. doi: 10.1016/j.chemgeo.2009.02.003

[22]

Lee S, Bi X, Reed R B, et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements[J].Environmental Science & Technology, 2014, 48(17): 10291-10300.

[23]

George L, Cook N J, Ciobanu C L, et al. Trace and minor elements in galena:A reconnaissance LA-ICP-MS study[J].American Mineralogist, 2015, 100(2-3): 548-569. doi: 10.2138/am-2015-4862

[24]

Liu P P, Zhou M F, Chen W T, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(Ⅴ) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan large igneous province, SW China[J]. Ore Geology Reviews, 2015, 65(4): 853-871.

[25]

Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides:An in-situ LA-ICP-MS study[J].Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020

[26]

Chen L, Li X H, Li J W, et al. Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, Central China:An in situ SIMS study with implications for the source of sulfur[J].Mineralium Deposita, 2015, 50(6): 643-656. doi: 10.1007/s00126-015-0597-9

[27]

Chirinos J R, Oropeza D D, Gonzalez J J, et al. Simultaneous 3-dimensional elemental imaging with Libs and LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(7): 1292-1298. doi: 10.1039/c4ja00066h

[28] Gao J F,Jackson S E,Dubé B. Genesis of the Canadian Malartic, Côté Gold, and Musselwhite Gold Deposits:Insights from LA-ICP-MS Element Mapping of Pyrite[M] . Targeted Geoscience Initiative 4: Contributions to the Understanding of Precambrian Iode Gold Deposits and Implications for Exploration (Dubé B, Mercier-Langevin P), Natural Resources Canada/Ressources naturelles Canada, 2015: 157-175.
[29]

Becker J S, Matusch A, Bei W, et al. Bioimaging mass spectro-metry of trace elements-Recent advance and applications of LA-ICP-MS:A review[J].Analytica Chimica Acta, 2014, 835(16): 1-18.

[30]

Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[31]

Rittner M, Müller W. 2D mapping of LA-ICPMS trace element distributions using R[J].Computers & Geosciences, 2012, 42: 152-161.

[32]

Paton C, Hellstrom J, Paul B, et al. Iolite:Freeware for the visualisation and processing of mass spectrometric data[J].Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. doi: 10.1039/c1ja10172b

[33]

Paul B, Paton C, Norris A, et al. Cellspace:A module for creating spatially registered laser ablation images within the iolite freeware environment[J].Journal of Analytical Atomic Spectrometry, 2012, 27(4): 700-706. doi: 10.1039/c2ja10383d

[34]

Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the lower Cambrian niutitang formation, NW Hunan Province, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398(3): 132-143.

[35]

Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China[J].Chemical Geology, 2007, 244(3): 584-604.

[36]

Bian X P, Yang T, Lin A J, et al. Rapid and high-precision measurement of sulfur isotope and sulfur concentration in sediment pore water by multi-collector inductively coupled plasma mass spectrometry[J].Talanta, 2015, 132: 8-14. doi: 10.1016/j.talanta.2014.08.053

[37]

Mclennan S M. Rare-earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J].Reviews in Mineralogy, 1989, 21(8): 169-200.

[38]

赵伦山, 张本仁编著.地球化学[M].北京:地质出版社, 1987:41-43.

Zhao L S, Zhang B R.Geochemistry[M].Beijing:Geology Publishing House, 1987:41-43.

[39]

Woodhead J D, Hellstrom J, Hergt J M, et al. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry[J].Geostandards & Geoanalytical Research, 2007, 31(4): 331-343.

[40]

Zhu Z, Cook N, Yang T, et al. Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS:Potential analytical problems, improvements and implications[J].Minerals, 2016, 6(4): 110. doi: 10.3390/min6040110

引证文献(本文共被引用1次)

[1]

基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J]. 周文喜,王华建,付勇,叶云涛,王晓梅,苏劲,王富良,葛枝华,梁厚鹏,魏帅超.  岩矿测试.2017(02)

相似文献(共15条)

[1]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[2]

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究. 岩矿测试, 2012, 31(1): 127-131.

[3]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[4]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[5]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[6]

胡海祥, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿主矿区金矿石的赋存特征. 岩矿测试, 2013, 32(6): 931-937.

[7]

刘琦, 赵爱林, 肖刚, 岳明新. 喷流沉积型多金属矿床中镍钼的赋存特征. 岩矿测试, 2013, 32(1): 70-77.

[8]

周文喜, 王华建, 付勇, 叶云涛, 王晓梅, 苏劲, 王富良, 葛枝华, 梁厚鹏, 魏帅超. 基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究. 岩矿测试, 2017, 36(2): 97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002

[9]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[10]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

[11]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[12]

马光祖, 梁国立. 理学3080E型X射线荧光光谱仪分辨率的改善. 岩矿测试, 1998, (1): 75-78.

[13]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[14]

樊连杰, 裴建国, 赵良杰, 林永生, 卢丽, 王喆. LA-ICP-MS研究桂林寨底地下河系统中碳酸盐岩稀土元素特征及其形成环境. 岩矿测试, 2016, 35(3): 251-258. doi: 10.15898/j.cnki.11-2131/td.2016.03.006

[15]

陈芳, 杜建国, 万秋, 邱军强, 汤金来. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄. 岩矿测试, 2016, 35(3): 329-338. doi: 10.15898/j.cnki.11-2131/td.2016.03.017

计量
  • PDF下载量(11)
  • 文章访问量(955)
  • HTML全文浏览量(315)
  • 被引次数(1)
目录

Figures And Tables

Iolite软件处理LA-ICP-MS线扫描数据适用性研究

朱碧, 朱志勇, 吕苗, 杨涛