【引用本文】 孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
MENG Yu-miao, HU Rui-zhong, GAO Jian-feng, et al. Research Progress on Sb Geochemistry and Sb Isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

锑的地球化学行为以及锑同位素研究进展

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081

收稿日期: 2016-03-10  修回日期: 2016-07-08  接受日期: 2016-07-15

基金项目: 国家自然科学基金重点项目(41230316);中国科学院地球化学研究所博士科研启动基金(Y5KJA20001,Y4CJ009000);中国科学院地球化学研究所矿床地球化学国家重点实验室“十二五”项目(SKLODGZY125070)

作者简介: 孟郁苗,博士,助理研究员,从事非传统稳定同位素地球化学及低温矿床成因研究。E-mail:mengyumiao@vip.gyig.ac.cn。

Research Progress on Sb Geochemistry and Sb Isotopes

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Received Date: 2016-03-10
Revised Date: 2016-07-08
Accepted Date: 2016-07-15

摘要:锑被广泛用于生产各种阻燃剂、玻璃、橡胶、颜料、陶瓷、半导体原件等。锑在火成岩中属于分散元素,但可以富集在沉积岩中(如深海黏土、页岩及碎屑岩)。锑常出现在与辉长质深成岩有关的岩浆硫化物矿床、与花岗岩有关的硫化物矿床、碎屑岩-碳酸岩赋矿的钨-锑-汞层控矿床及热液铅锌矿床中。目前高精度锑同位素的分析测试方法已基本成熟,即酸溶、阳离子树脂交换柱结合硫醇棉纤维法或阴阳离子交换柱法分离富集锑、氢化物发生器MC-ICP-MS测定锑同位素。仪器的质量歧视校正通常采用标样-样品匹配法、In内标法和Sn内标法。不同地质储库端元的锑同位素组成变化较大(达18‱),海水为~3.7‱,硅酸岩为0.9‱~2.9‱,硫化物(辉锑矿、闪锌矿、黄铁矿、白铁矿)为-1.9‱~16.9‱。且来自不同国家的辉锑矿具有不同的锑同位素组成,不同产地玻璃的锑同位素组成也不同。锑同位素在氧化还原过程(或硫化物沉淀)和无机吸附过程会发生明显分馏,分别达~9‱和~4‱。因此,锑同位素有可能作为一种灵敏的地球化学示踪剂,对示踪成矿物质来源、刻画与氧化还原等过程有关的成矿过程和探讨矿床形成机理、矿区重金属锑污染的治理以及考古等方面具有重要指示作用。

关键词: 锑同位素, 地球化学, 非传统稳定同位素, 同位素分馏

Research Progress on Sb Geochemistry and Sb Isotopes

KEY WORDS: Sb isotopes, geochemistry, non-traditional stable isotopes, isotope fractionation

本文参考文献

[1]

刘英俊,曹励明,李兆麟. 元素地球化学[M] . 北京: 科学出版社, 1984

Liu Y J,Cao L M,Li Z L. Elements Geochemistry[M] . Beijing: Science Press, 1984
[2]

Zhu X, O'nions R, Guo Y, et al. Determination of Natural Cu-isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Tracers[J]. Chemical Geology, 2000, 163(1): 139-149.

[3]

Mason T F D, Weiss D J, Chapman J B, et al. Zn and Cu Isotopic Variability in the Alexandrinka Volcanic-hosted Massive Sulphide (VHMS) Ore Deposit,Urals,Russia[J]. Chemical Geology, 2005, 221(3): 170-187.

[4]

John S G, Rouxel O J, Craddock P R, et al. Zinc Stable Isotopes in Seafloor Hydrothermal Vent Fluids and Chimneys[J]. Earth and Planetary Science Letters, 2008, 269(1): 17-28.

[5]

Weyer S, Schwieters J. High Precision Fe Isotope Mea-surements with High Mass Resolution MC-ICPMS[J].International Journal of Mass Spectrometry, 2003, 226(3): 355-368. doi: 10.1016/S1387-3806(03)00078-2

[6]

Bizzarro M, Baker J A, Haack H, et al. Mg Isotope Evidence for Contemporaneous Formation of Chondrules and Refractory Inclusions[J].Nature, 2004, 431: 275-278. doi: 10.1038/nature02882

[7]

Zack T, Tomascak P B, Rudnick R L, et al. Extremely Light Li in Orogenic Eclogites:The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust[J]. Earth and Planetary Science Letters, 2003, 208(3): 279-290.

[8]

Andreae M O.The Determination of the Chemical Species of Some of the ‘Hydride Elements’(Arsenic,Antimony,Tin,and Germanium) in Seawater:Methodology and Results[R].NATO Conference Series,1983:1-19.

[9]

Wang X, He M, Xie J, et al. Heavy Metal Pollution of the World Largest Antimony Mine-affected Agricultural Soils in Hunan Province (China)[J].Journal of Soils and Sediments, 2010, 10(5): 827-837. doi: 10.1007/s11368-010-0196-4

[10]

Fu Z, Wu F, Amarasiriwardena D, et al. Antimony,Ar-senic and Mercury in the Aquatic Environment and Fish in a Large Antimony Mining Area in Hunan,China[J].Science of the Total Environment, 2010, 408(16): 3403-3410. doi: 10.1016/j.scitotenv.2010.04.031

[11]

He M. Distribution and Phytoavailability of Antimony at an Antimony Mining and Smelting Area,Hunan,China[J].Environmental Geochemistry and Health, 2007, 29(3): 209-219. doi: 10.1007/s10653-006-9066-9

[12]

Jochum K P, Hofmann A W. Constraints on Earth Evolution from Antimony in Mantle-derived Rocks[J]. Chemical Geology, 1997, 139(1): 39-49.

[13]

Noll P D, Newsom H E, Leeman W P, et al. The Role of Hydrothermal Fluids in the Production of Subduction Zone Magmas:Evidence from Siderophile and Chalcophile Trace Elements and Boron[J].Geochimica et Cosmochimica Acta, 1996, 60(4): 587-611. doi: 10.1016/0016-7037(95)00405-X

[14]

Qi H, Hu R, Zhang Q, et al. Concentration and Distribution of Trace Elements in Lignite from the Shengli Coalfield,Inner Mongolia,China:Implications on Origin of the Associated Wulantuga Germanium Deposit[J].International Journal of Coal Geology, 2007, 71(2-3): 129-152. doi: 10.1016/j.coal.2006.08.005

[15]

Rouxel O, Ludden J, Fouquet Y, et al. Antimony Isotope Variations in Natural Systems and Implications for Their Use as Geochemical Tracers[J]. Chemical Geology, 2003, 200(1): 25-40.

[16]

刘海臣, 朱炳泉. 湘西板溪群及冷家溪群的时代研究[J]. 科学通报, 1994, 39(2): 148-150.

Liu H C, Zhu B Q. The Geochronological Study of Banxi and Lengjiaxi Groups in Western Hunan[J]. Chinese Science Bulletin, 1994, 39(2): 148-150.

[17]

张宝贵. 中国主要层控汞锑砷(雄黄,雌黄)矿床分类成矿模式与找矿[J]. 地球化学, 1989, (2): 131-138.

Zhang B G. Genetic Classification,Minerogenetic Model,and Prospecting of Main Strata-bound Mercury,Antimony and Arsenic (Realgar,Oroiment) Ore Deposits in China[J].Geochimica, 1989, (2): 131-138.

[18]

Han R S, Liu C Q, Huang Z L, et al. Geological Features and Origin of the Huize Carbonate-hosted Zn-Pb-(Ag) District,Yunnan,South China[J].Ore Geology Reviews, 2007, 31(1-4): 360-383. doi: 10.1016/j.oregeorev.2006.03.003

[19]

王泽鹏.贵州省西南部低温矿床成因及动力学机制研究——以金锑矿为例[D].北京:中国科学院大学,2013.

Wang Z P.Genesis and Dynamic Mechanism of the Epithermal Ore Deposits,SW Guizhou,China-A Case Study of Gold and Antimony Deposits[D].Beijing:University of Chinese Academy of Sciences,2013.

[20]

余金杰, 闫升好. 锑矿床研究若干问题初探[J]. 矿床地质, 2000, 19(2): 166-172.

Yu J J, Yan S H. A Preliminary Discussion on Some Problems of Antimony Deposits[J]. Mineral Deposits, 2000, 19(2): 166-172.

[21]

张国林, 姚金炎, 谷相平, 等. 中国锑矿床类型及时空分布规律[J]. 矿产与地质, 1998, (5): 19-25.

Zhang G L, Yao J Y, Gu X P, et al. Time and Spatial Distribution Regularities and Deposit Types of Antimony in China[J]. Mineral Resources and Geology, 1998, (5): 19-25.

[22]

Lobo L, Devulder V, Degryse P, et al. Investigation of Natural Isotopic Variation of Sb in Stibnite Ores via Multi-collector ICP-Mass Spectrometry-Perspectives for Sb Isotopic Analysis of Roman Glass[J].Journal of Analytical Atomic Spectrometry, 2012, 27(8): 1304-1310. doi: 10.1039/c2ja30062a

[23]

Yu M Q. Determination of Trace Arsenic,Antimony,Selenium and Tellurium in Various Oxidation States in Water by Hydride Generation and Atomic-Absorption Spectrophotometry after Enrichment and Separation with Thiol Cotton[J].Talanta, 1983, 30(4): 265-270. doi: 10.1016/0039-9140(83)80060-5

[24]

Lobo L, Degryse P, Shortland A, et al. Isotopic Analysis of Antimony Using Multi-collector ICP-Mass Spectro-metry for Provenance Determination of Roman Glass[J].Journal of Analytical Atomic Spectrometry, 2013, 28(8): 1213-1219. doi: 10.1039/c3ja50018g

[25]

Lobo L, Degryse P, Shortland A, et al. Copper and Antimony Isotopic Analysis via Multi-collector ICP-Mass Spectrometry for Provenancing Ancient Glass[J].Journal of Analytical Atomic Spectrometry, 2014, 29(1): 58-64. doi: 10.1039/C3JA50303H

[26]

Meng Y M, Qi H W, Hu R Z, et al. Determination of German-ium Isotopic Compositions of Sulfides by Hydride Generation MC-ICP-MS and Its Application to the Pb-Zn Deposits in SW China[J].Ore Geology Reviews, 2015, 65: 1095-1109. doi: 10.1016/j.oregeorev.2014.04.008

[27]

Rouxel O, Fouquet Y, Ludden J N, et al. Subsurface Processes at the Lucky Strike Hydrothermal Field,Mid-Atlantic Ridge:Evidence from Sulfur,Selenium,and Iron Isotopes[J].Geochimica et Cosmochimica Acta, 2004, 68(10): 2295-2311. doi: 10.1016/j.gca.2003.11.029

[28]

Tanimizu M, Araki Y, Asaoka S, et al. Determination of Natural Isotopic Variation in Antimony Using Inductively Coupled Plasma Mass Spectrometry for an Uncertainty Estimation of the Standard Atomic Weight of Antimony[J].Geochemical Journal, 2011, 45(1): 27-32. doi: 10.2343/geochemj.1.0088

相似文献(共19条)

[1]

陈宇峰, 郑秀丽, 李晶, 贺行良, 刘昌岭, 孟庆国, 秦德谛, 张培玉. 渤海沉积物中甲烷氧化速率及同位素分馏规律研究. 岩矿测试, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

[2]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[3]

丁悌平. 稳定同位素地球化学的现状与展望. 岩矿测试, 1990, (1): 72-77.

[4]

吴夏, 涂林玲, 杨会, 王华, 朱晓燕, 张美良. 水样中溶解性无机碳同位素测试前处理方法对比研究. 岩矿测试, 2013, 32(4): 649-658.

[5]

焦杏春, 王广, 叶传永, 曹红英, 王晓春, 杨永亮, 刘晓端. 应用单体碳同位素技术探析农田土壤中多环芳烃的植物降解过程. 岩矿测试, 2014, 33(6): 863-870.

[6]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[7]

赵志琦, 刘丛强, . 河水样品中硼的分离及其同位素组成测定. 岩矿测试, 2002, (4): 279-283.

[8]

李月芳, , 唐富荣. 氢同位素分析样品制备新方法. 岩矿测试, 2001, (3): 179-182.

[9]

张健, 陈华, 陆太进, 丘志力, 魏然, 柯捷. 山东金刚石碳同位素组成的二次离子质谱显微分析. 岩矿测试, 2012, 31(4): 591-596.

[10]

刘建国. 磷锑钼蓝分光光度法测定地球化学样品中的磷. 岩矿测试, 1989, (2): 150-152.

[11]

刘晓端, 刘浏, 武佃卫, 徐清. 密云水库沉积物-水界面磷的地球化学作用. 岩矿测试, 2004, (4): 246-250.

[12]

程建平, 任萍, 朱立, 刘桂林, 李君利, 施工. 利用地球化学数据估算陆地γ辐射剂量率研究. 岩矿测试, 2004, (4): 241-245.

[13]

李津, 朱祥坤, 唐索寒. 双稀释剂法在非传统稳定同位素测定中的应用——以钼同位素为例. 岩矿测试, 2011, 30(2): 138-143.

[14]

鄢明才. 地球化学标准物质标准不确定度估算探讨. 岩矿测试, 2001, (4): 287-293.

[15]

杨锦发. 地球化学调查样品测试异常值抽查方法的优化. 岩矿测试, 2004, (3): 212-215.

[16]

鄢明才, 王春书. 铂族元素地球化学标准物质的研制. 岩矿测试, 1998, (1): 1-21.

[17]

黄华谷, 黄铁兰, 周兆帅, 屈文俊. 广东三个离子吸附型稀土矿的地球化学特征及开采现状. 岩矿测试, 2014, 33(5): 737-746.

[18]

罗立强. 国际地球化学研究现状与发展前沿——国际地球化学大会Goldschmidt 2011印象. 岩矿测试, 2012, 31(1): 1-6.

[19]

陈芳, 杜建国, 万秋, 邱军强, 汤金来. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄. 岩矿测试, 2016, 35(3): 329-338. doi: 10.15898/j.cnki.11-2131/td.2016.03.017

计量
  • PDF下载量(7)
  • 文章访问量(238)
  • HTML全文浏览量(59)
  • 被引次数(0)
目录

Figures And Tables

锑的地球化学行为以及锑同位素研究进展

孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文