【引用本文】 周丹怡, 陈华, 陆太进, 等. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系[J]. 岩矿测试, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008
ZHOU Dan-yi, CHEN Hua, LU Tai-jin, et al. Study on the Relationship between the Relative Content of Moganite and the Crystallinity of Quartzite Jade by Raman Scattering Spectroscopy, Infrared Absorption Spectroscopy and X-ray Diffraction Techniques[J]. Rock and Mineral Analysis, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008

基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系

1. 

国土资源部珠宝玉石首饰管理中心北京珠宝研究所, 北京 100013

2. 

中国地质大学(北京)珠宝学院, 北京 100083

3. 

国家珠宝玉石质量监督检验中心, 北京 100013

收稿日期: 2015-06-26  修回日期: 2015-09-22  接受日期: 2015-11-10

基金项目: 国土资源部公益性行业科研专项项目(201011005-2B)

作者简介: 周丹怡, 硕士, 宝石学专业。E-mail:lilyzdy@163.com

通信作者: 陈华, 研究员, 主要从事珠宝玉石研究。E-mail:chenhua63@163.com

Study on the Relationship between the Relative Content of Moganite and the Crystallinity of Quartzite Jade by Raman Scattering Spectroscopy, Infrared Absorption Spectroscopy and X-ray Diffraction Techniques

1. 

Beijing Research Institute, National Gems & Jewelry Technology Administrative Center, Ministry of Land and Resources, Beijing 100013, China

2. 

School of Gemology, China University of Geosciences(Beijing), Beijing 100083, China

3. 

National Gemstone Testing Center, Beijing 100013, China

Corresponding author: CHEN Hua, chenhua63@163.com

Received Date: 2015-06-26
Revised Date: 2015-09-22
Accepted Date: 2015-11-10

摘要:石英质玉石的成分除α-石英外, 还或多或少含有一种低温低压的SiO2矿物"斜硅石", 关于斜硅石的相对含量与石英质玉石结晶程度的关系还未见有研究。本文选取中国云南龙陵、安徽霍山、广西贺州和内蒙古阿拉善盟地区所产出的不同类型的石英质玉石为研究对象, 采用拉曼光谱、红外光谱、X射线衍射分析技术, 确定了斜硅石的相对含量与石英质玉石结晶程度之间的关系。结果表明, 石英质玉石中斜硅石的相对含量越高, 石英质玉石的结晶程度越低; 其中拉曼光谱中能够描述斜硅石相对含量变化的502 cm-1/465 cm-1两峰强度比值(X)与石英质玉石的结晶度指数(Y)基本上呈负相关关系:Y=-0.36X+6.93(r=-0.94)。此结论为利用无损检测手段大致判断石英质玉石的结晶程度提供了新的思路, 同时也为定性评价石英质玉石的品级提供了科学依据和理论约束。

关键词: 石英质玉石结晶度, 斜硅石相对含量, 拉曼光谱法, 红外光谱法, X射线衍射法

Study on the Relationship between the Relative Content of Moganite and the Crystallinity of Quartzite Jade by Raman Scattering Spectroscopy, Infrared Absorption Spectroscopy and X-ray Diffraction Techniques

KEY WORDS: crystallinity of quartzite jade, relative content of moganite, Raman Spectroscopy, Infrared Spectroscopy, X-ray Diffraction

本文参考文献

[1]

Heaney P J, Post J E. The Widespread Distribution of a Novel Silica Polymorph in Microcrystalline Quartz Varieties[J].Science, 1992, 255: 441-443. doi: 10.1126/science.255.5043.441

[2]

Heaney P J. Structure and Chemistry of the Low-pressure Silica Polymorphs[M]//Heaney P J, Prewitt C T, Gibbs G V. Silica. Washington D C: Mineralogical Society of America, 1994: 1-40.

[3]

Miehe G, Graetsch H. Crystal Structure of Moganite:A New Structure Type for Silica[J].European Journal of Mineralogy, 1992, 4: 693-706. doi: 10.1127/ejm/4/4/0693

[4]

Wahl C, Miehe G, Fuess H, et al. TEM Characterisation and Interpretation of Fabric and Structural Degree of Order in Microcrystalline SiO2 Phases[J].Contributions to Mineralogy and Petrology, 2002, 143: 360-365. doi: 10.1007/s00410-002-0348-7

[5]

刘鑫鑫. 南京六合方山沉积砾石层中玛瑙雨花石矿物学研究[D]. 南京: 南京大学, 2013.

Liu X X. The Mineralogical Study of Agates in the Sedimentary Gravel Layers from Fangshan, Liuhe County, Nanjing[D]. Nanjing: Nanjing University, 2013.

[6]

Graetsch H. Structural Characteristics of Opaline and Microcrystalline Silica Minerals[M]//Heaney P J, Prewitt C T, Gibbs G V. Silica. Washington D C: Mineralogical Society of America, 1994: 209-232.

[7]

Graetsch H, Flörke O W, Miehe G, et al. Structural Defects in Microcrystalline Silica[J].Physics and Chemistry of Minerals, 1987, 14: 249-257. doi: 10.1007/BF00307990

[8]

Graetsch H, Topalovic I, Gies H, et al. NMR Spectra of Moganite and Chalcedony[J].European Journal of Mineralogy, 1994, 4: 459-464.

[9]

Götze J, Nasdala L, Kleeberg R, et al. Occurrence and Distribution of 'Moganite' in Agate/Chalcedony:A Combined Micro-Raman, Rietveld, and Cathodolumin-escence Study[J].Contributions to Mineralogy and Petrology, 1998, 133: 96-105. doi: 10.1007/s004100050440

[10]

Zhang M, Moxon T. In Situ Infrared Spectroscopic Studies of OH, H2O and CO2 in Moganite[J].European Journal of Mineralogy, 2012, 24: 123-131. doi: 10.1127/0935-1221/2011/0023-2165

[11]

Schmidt P. Moganite Detection in Silica Rocks Using Raman and Infrared Spectroscopy[J].European Journal of Mineralogy, 2013, 25: 797-805. doi: 10.1127/0935-1221/2013/0025-2274

[12]

Hardgrove C. Thermal Infrared and Raman Microspectro-scopy of Moganite-bearing Rocks[J].American Mineralogist, 2013, 8: 78-84.

[13]

Sitarz M, Wyszomirski P, Handke B, et al. Moganite in Selected Polish Chert Samples:The Evidence from MIR, Raman and X-ray Studies[J].Molecular and Biomolecular Spectroscopy, 2014, 122: 55-58. doi: 10.1016/j.saa.2013.11.039

[14]

Zhang M, Moxon T. Infrared Absorption Spectroscopy of SiO2-Moganite[J].American Mineralogist, 2014, 99: 671-680. doi: 10.2138/am.2014.4589

[15]

Capel F C, Leon R L, Jorge V S, et al. Combined Raman Spectroscopic and Rietveld Analyses as a Useful and Nondestructive Approach to Studying Flint Raw Materials at Prehistoric Archaeological Sites[J].Archaeology & Anthropology Science, 2015, 7(2): 235-243.

[16]

Wenk H R, Shaffer S J, Tendelo G V, et al. Planar Defects in Low Temperature Quartz[J].Physica Status Solidi A:Applied Research, 1988, 107: 799-805. doi: 10.1002/(ISSN)1521-396X

[17]

Heaney P J. Moganite as an Indicator for Vanished Evaporites:A Testament Reborn?[J].Journal of Sedimentary Petrology A, 1995, 65: 633-638.

[18]

Moxon T, Ríos S. Moganite and Water Content as a Function of Age in Agate:An XRD and Thermogravimetric Study[J].European Journal of Mineralogy, 2004, 16: 269-278. doi: 10.1127/0935-1221/2004/0016-0269

[19]

Moxon T, Carpenter M A. Crystallite Growth Kinetics in Nanocrystalline Quartz(Agate and Chalcedony)[J].Mineralogical Magazine, 2009, 73(4): 551-568. doi: 10.1180/minmag.2009.073.4.551

[20]

Hatipoglu M. Moganite and Quartz Inclusions in the Nano-structured Anatolian Fire Opals from Turkey[J].Journal of African Earth Sciences, 2009, 54: 1-21. doi: 10.1016/j.jafrearsci.2009.01.004

[21]

Heaney P J, Mckeown D A, Jeferey P E, et al. Anomalous Behavior at the I2/a to Imab Phase Transition in SiO2-Moganite:An Analysis Using Hard-mode Raman Spectroscopy[J].American Mineralogist, 2007, 92: 631-639. doi: 10.2138/am.2007.2184

[22]

Bustillo M A. Moganite in the Chalcedony Varieties of Continental Cherts(Miocene, Madrid Basin, Spain)[J].Spectroscopy Letters, 2012, 45: 109-113. doi: 10.1080/00387010.2011.610410

[23]

Kingma K J, Hemley R J. Raman Spectroscopic Study of Microcrystalline Silica[J].American Mineralogist, 1994, 79: 269-273.

[24]

黄继武,李周编著. 多晶材料X射线衍射——实验原理、方法与应用[M] . 北京: 冶金工业出版社, 2012: 118-131.

Huang J W,Li Z. X-ray Diffraction of Polycrystalline Material-Experimental Principles, Methods and Application[M] . Beijing: Metallurgical Industry Press, 2012: 118-131.
[25]

Murata K J, Norman M B. An Index of Crystallinity for Quartz[J].American Journal of Science, 1976, 276: 1120-1130. doi: 10.2475/ajs.276.9.1120

[26]

何明跃, 王濮. 石英的结晶度指数及其标型意义[J]. 矿物岩石, 1994, 14(3): 22-28.

He M Y, Wang P. The Crystallinity of Quartz and Its Typomorphic Significance[J]. Minerals and Rocks, 1994, 14(3): 22-28.

[27]

Williams L A, Parks G A, Crerar D A, et al. Silica Diagenesis, Ⅰ[J].Journal of Sedimentary Petrology, 1985, 55: 301-311.

[28]

谢天琪. 辽宁阜新"战国红"玛瑙致色机理及结构成因研究[D]. 北京: 中国地质大学(北京), 2014.

Xie T Q. Study on the Color and Genesis of Zhanguohong Agate from Fuxin, Liaoning Province[D]. Beijing: China University of Geosciences(Beijing), 2014.

相似文献(共20条)

[1]

兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009

[2]

任叶叶, 张俭, 严俊, 林剑, 陈思杭, 盛嘉伟. 应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制. 岩矿测试, 2015, 34(2): 181-186. doi: 10.15898/j.cnki.11-2131/td.2015.02.005

[3]

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析. 岩矿测试, 2014, 33(4): 535-544.

[4]

武素茹, 宋义, 谷松海, 郭芬, 孙鑫. X射线荧光光谱-X射线衍射-红外光谱联用技术鉴别锰矿与锰冶炼渣. 岩矿测试, 2015, 34(6): 659-664. doi: 10.15898/j.cnki.11-2131/td.2015.06.009

[5]

宁珮莹, 张天阳, 马泓, 谢俊, 丁汀, 黎辉煌, 梁榕. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033

[6]

周瑶琪, 倪培, 陈勇. 一种获取包裹体内压的新方法——二氧化碳拉曼光谱法. 岩矿测试, 2006, 25(3): 211-214.

[7]

黄剑锋, 朱广燕, 吴建鹏, 曹丽云, 贺海燕. 无机材料中24种组分X射线衍射物相定量分析外标法标准曲线库的建立. 岩矿测试, 2007, 26(5): 398-400.

[8]

邓兴波, 陈敏, 刘昌岭, 任宏波, 庄新国. 拉曼光谱法定量测定水合物-水体系中的硫酸根. 岩矿测试, 2014, 33(3): 418-423.

[9]

秦颖, 罗武干, 王昌燧, 胡雅丽. 九连墩楚墓青铜器锈蚀产物的拉曼光谱分析. 岩矿测试, 2007, 26(2): 138-140.

[10]

罗武干, 胡雅丽, 秦颖, 王昌燧. 九连墩楚墓青铜器锈蚀产物的拉曼光谱分析. 岩矿测试, 2007, 26(2): 138-140.

[11]

张然, 许虹, 李梅梅. 稀有矿物天津蓟县锰方硼石振动光谱特征研究. 岩矿测试, 2018, 37(2): 139-145. doi: 10.15898/j.cnki.11-2131/td.201703160034

[12]

孟洁, 李妍. 应用光谱-电镜-热解析手段表征两种金属有机配合物及其对多环芳烃的吸附性能研究. 岩矿测试, 2014, 33(6): 876-884.

[13]

冉敬, 郭创锋, 杜谷, 王凤玉. X射线衍射全谱拟合法分析蓝晶石的矿物含量. 岩矿测试, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025

[14]

唐梦奇, 黎香荣, 刘国文, 刘顺琼. X射线衍射K值法测定氧化铁皮中游离α-SiO2的含量. 岩矿测试, 2015, 34(5): 565-569. doi: 10.15898/j.cnki.11-2131/td.2015.05.011

[15]

徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008

[16]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[17]

周姣花, 汪建宇, 顾茗心, 王真. 利用X射线衍射和岩矿鉴定等技术研究河南汤家坪钼矿区主要矿物标型特征. 岩矿测试, 2015, 34(1): 82-90. doi: 10.15898/j.cnki.11-2131/td.2015.01.011

[18]

张梅, 高孝礼, 黄光明, 封亚辉. 微量石棉的X射线衍射定量检测. 岩矿测试, 2010, 29(3): 309-312.

[19]

迟广成, 肖刚, 伍月, 陈英丽, 王海娇, 胡建飞. X射线粉晶衍射仪在大理岩鉴定与分类中的应用. 岩矿测试, 2014, 33(5): 698-705.

[20]

解古巍, 叶美芳, 黄静, 王小琳, 南珺祥, 任志鹏, 石小虎, 柳娜. 大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响. 岩矿测试, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131

计量
  • PDF下载量(4)
  • 文章访问量(122)
  • HTML全文浏览量(36)
  • 被引次数(0)
目录

Figures And Tables

基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系

周丹怡, 陈华, 陆太进, 柯捷, 何明跃