【引用本文】 吴石头, 王亚平, 许春雪, . 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002
WU Shi-tou, WANG Ya-ping, XU Chun-xue. Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质大学(武汉)地球科学学院, 湖北 武汉 430074

3. 

Geoscience Center Göttingen, University of Göttingen, Goldschmidt Straβe.1, 37077, Göttingen, Germany

收稿日期: 2015-05-17  修回日期: 2015-08-28  接受日期: 2015-09-05

基金项目: 中国地质大调查项目(12120113021500)

作者简介: 吴石头, 在读博士研究生, 主要研究方向为地球化学。E-mail: wushitou111@hotmail.com。

通讯作者: 王亚平, 博士, 研究员, 从事标准物质研制和岩矿测试方面的研究工作。E-mail: wangyaping@cags.ac.cn

Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

1. 

National Research Center for Geoanalysis, Beijing 10037, China

2. 

School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China

3. 

Geoscience Center Göttingen, University of Göttingen, Goldschmidt Straβe.1, 37077, Göttingen, Germany

Corresponding author: WANG Ya-ping, wangyaping@cags.ac.cn

Received Date: 2015-05-17
Revised Date: 2015-08-28
Accepted Date: 2015-09-05

摘要:激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是目前地球科学分析领域的重要技术手段, 元素微区分析标准物质研制是该分析技术发展的重要方向。本文对当前LA-ICP-MS元素微区分析标准物质的种类、元素分布以及应用上的优缺点和标准物质的制备方法进行了评述。现有的有证标准物质数量不多、种类不齐全, 部分元素浓度较低, 定值不确定度较大, 应用上受到较大的局限性; 研制标准也不成熟, 均匀性检验方面尚未有统一的方法。本文参照岩石粉末标准物质均匀性检验方法提出了两步均匀性检验法, 同时指出在标准物质种类方面, 铂族元素及Au元素浓度适当、Pb-S等不同硫化物基体标准物质, 以及化学成分不同的碳酸岩和磷酸岩基体标准物质是当前的迫切需求; 在标准物质研制技术方面, 纳米岩石粉末压片技术的研发、原位微区分析标准物质(固体)均匀性检验判别标准研究是亟待解决的问题。

关键词: LA-ICP-MS, 标准物质, 熔融玻璃法, 纳米粉末压片法, 均匀性检验

Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

KEY WORDS: Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), reference materials, glass melting technique, nano-powder tablet technique, homogeneity test

本文参考文献

[1]

Liu Y S, Hu Z C, Gao S, et al. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[2]

Seo J H, Guillong M, Aerts M, et al. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS[J].Chemical Geology, 2011, 284(1-2): 35-44.

[3]

Wälle M, Heinrich C A. Fluid Inclusions Measurements by Laser Ablation Sector-field ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1052-1057. doi: 10.1039/C4JA00010B

[4]

Zhang L, Ren Y Z, Alexander R L, et al. Lead Isotope Analysis of Melt Inclusions by LA-MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1393-1405. doi: 10.1039/C4JA00088A

[5]

Günther D, Audétat A, Frischknecht R, et al. Quantitative Analysis of Major, Minor and Trace Elements in Fluid Inclusions Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry, 1998, 13(4): 263-270. doi: 10.1039/A707372K

[6]

Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

[7]

Jackson S E, Pearson N J, Griffin W L, et al. The Appli-cation of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology[J].Chemical Geology, 2004, 211(1-2): 47-69. doi: 10.1016/j.chemgeo.2004.06.017

[8]

Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

[9]

Guillong M, Quadt A, Sakata S, et al. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 963-970. doi: 10.1039/C4JA00009A

[10]

Longerich H P, Jackson S E, Günther D, et al. Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899

[11]

Koch J, Günther D. Review of the State-of-the-Art of Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Applied Spectroscopy, 2011, 65(5): 155A-162A. doi: 10.1366/11-06255

[12]

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples[J].Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

[13]

Miliszkiewicz N, Walas S, Tobiasz A, et al. Current Appro-aches to Calibration of LA-ICP-MS Analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 327-338. doi: 10.1039/C4JA00325J

[14]

Guillong M, Horn I, Günther D, et al. A Comparison of 266nm, 213nm and 193nm Produced from a Single Solid State Nd:YAG Laser for Laser Ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1224-1230. doi: 10.1039/B305434A

[15]

Jochum K P, Stoll B, Weis U, et al. Non-matrix-matched Calibration for the Multi-element Analysis of Geological and Environmental Samples Using 200nm Femtosecond LA-ICP-MS:A Comparison with Nanosecond Lasers[J].Geostandards and Geoanalytical Research, 2014, 38(3): 265-292. doi: 10.1111/ggr.2014.38.issue-3

[16]

Guillong M, Hametner K, Reusser E, et al. Preliminary Characterisation of New Glass Reference Materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193nm, 213nm and 266nm Wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3): 315-331. doi: 10.1111/ggr.2005.29.issue-3

[17]

Jochum K P, Willbold M, Raczek I, et al. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2005, 29(3): 285-302. doi: 10.1111/ggr.2005.29.issue-3

[18]

Jochum K P, Stoll B, Herwig K, et al. MPI-DING Refer-ence Glasses for in situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios[J].Geochemistry, Geophysics, Geosystems, 2006, 7(2): 1-44.

[19]

Jochum K P, Weis U, Stoll B, et al. Determination of Reference Values for NIST SRM610-617 Glasses Following ISO Guidelines[J].Geostandards and Geoanalytical Research, 2011, 35(4): 397-429. doi: 10.1111/ggr.2011.35.issue-4

[20]

Jochum K P, Wilson S A, Abouchami W, et al. GSD-1G and MPI-DING Reference Glasses for in situ and Bulk Isotopic Determination[J].Geostandards and Geoanalytical Research, 2011, 35(2): 193-226. doi: 10.1111/ggr.2011.35.issue-2

[21]

Tabersky D, Luechinger N A, Rossier M, et al. Develop-ment and Characterization of Custom-engineered and Compacted Nanoparticles as Calibration Materials for Quantification Using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 955-962. doi: 10.1039/C4JA00054D

[22]

Garbe-Schönberg D, Müller S. Nano-particulate Pressed Powder Tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6): 990-1000. doi: 10.1039/C4JA00007B

[23]

Rocholl A B E, Simon K, Jochun K P, et al. Chemical Characterisation of NIST Silicate Glass Certified Reference Material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE[J].Geostandards Newsletter—The Journal of Geostandards and Geoanalysis, 1997, 21(1): 101-114. doi: 10.1111/ggr.1997.21.issue-1

[24]

Horn I, Hinton R W, Jackson S, et al. Ultra-trace Ele-ment Analysis of NIST SRM616 and 614 Using Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS):A Comparison with Secondary Ion Mass Spectrometry (SIMS)[J].Geostandards Newsletter, 1997, 21(2): 191-203. doi: 10.1111/ggr.1997.21.issue-2

[25]

Duffin A M, Springer K W, Ward J D, et al. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass[J].Journal of Analytical Atomic Spectrometry, 2015, 30(5): 1100-1107. doi: 10.1039/C4JA00452C

[26]

Gao S, Liu X M, Yuan H L, et al. Determination of Forty-two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards Newsletter, 2002, 26(2): 181-196. doi: 10.1111/ggr.2002.26.issue-2

[27]

Strnad L, Mihaljevic M, Sebek O, et al. Laser Ablation and Solution ICP-MS Determination of Rare Earth Elements in USGS BIR-1G, BHVO-2G and BCR-2G Glass Reference Materials[J].Geostandards and Geoanalytical Research, 2005, 29(3): 303-314. doi: 10.1111/ggr.2005.29.issue-3

[28]

Nielsen S G, Lee C T A. Determination of Thallium in the USGS Glass Reference Materials BIR-1G, BHVO-2G and BCR-2G and Application to Quantitative Tl Concentrations by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2013, 37(3): 337-343. doi: 10.1111/ggr.2013.37.issue-3

[29]

Jochum K P, Scholz D, Stoll B, et al. Accurate Trace Element Analysis of Speleothems and Biogenic Calcium Carbonates by LA-ICP-MS[J].Chemical Geology, 2012, 318: 31-44.

[30]

Chen L, Liu Y S, Hu Z C, et al. Accurate Determinations of Fifty-four Major and Trace Elements in Carbonate by LA-ICP-MS Using Normalization Strategy of Bulk Components as 100%[J].Chemical Geology, 2011, 284(3-4): 283-295. doi: 10.1016/j.chemgeo.2011.03.007

[31]

Lazartigues A V, Sirois P, Savard D, et al. LA-ICP-MS Analy-sis of Small Samples:Carbonate Reference Materials and Larval Fish Otoliths[J].Geostandards and Geoanalytical Research, 2014, 38(2): 225-240.

[32]

Jochum K P, Dingwell D B, Rocholl A, et al. The Prepa-ration and Preliminary Characterisation of Eight Geological MP-DING Reference Glasses for in-situ Microanalysis[J].Geostandards Newsletter, 2000, 24(1): 87-133. doi: 10.1111/ggr.2000.24.issue-1

[33]

Hu M Y, Fan X T, Stoll B, et al. Preliminary Charac-terisation of New Reference Materials for Microanalysis:Chinese Geological Standard Glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research, 2011, 35(2): 235-251. doi: 10.1111/ggr.2011.35.issue-2

[34]

Yang Q C, Jochum K P, Stoll B, et al. BAM-S005 Type A and B:New Silicate Reference Glasses for Microanalysis[J].Geostandards and Geoanalytical Research, 2012, 36(3): 301-313. doi: 10.1111/ggr.2012.36.issue-3

[35]

Dingwell D, Bagdassarov N, Bussod N, et al. Magma Rheology. Mineralogical Association of Canada Short Course on Experiments at High Pressure and Applications to the Earth's Mantle[M]. Mineralogical Association of Canada (MAC) Short Course Series, 1993, 21: 131-196.

[36]

Matschat R, Dette A, Guadagnino E. The Certification of the Mass Fraction of Arsenic(Ⅲ) Oxide, Barium Oxide, Cadmium Oxide, Cerium(Ⅳ) Oxide, Chloride, Cobalt Oxide, Chromium(Ⅲ) Oxide, Copper(Ⅱ) Oxide, Iron(Ⅲ) Oxide, Manganese(Ⅱ) Oxide, Molybdenum(Ⅵ) Oxide, Nickel(Ⅱ) Oxide, Lead(Ⅱ) Oxide, Antimony(Ⅲ) Oxide, Selenium, Tin(Ⅳ) Oxide, Sulfur Trioxide, Strontium Oxide, Titanium(Ⅳ) Oxide, Vanadium(Ⅴ) Oxide, Zinc Oxide, and Zirconium(Ⅳ) Oxide in Soda Lime Glass BAM-S005-A and BAM-S005-B[R]. 2005.

[37]

Czas J, Jochum K P, Stoll B, et al. Investigation of Matrix Effects in 193nm Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis Using Reference Glasses of Different Transparencies[J].Spectrochimica Acta Part B-Atomic Spectroscopy, 2012, 78: 20-28. doi: 10.1016/j.sab.2012.09.004

[38]

Yuan J H, Zhan U C, Fan C Z, et al. Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration[J].Chinese Journal of Analytical Chemistry, 2012, 40(2): 201-207. doi: 10.1016/S1872-2040(11)60528-8

[39]

Klemme S, Prowatke S, Münker C, et al. Synthesis and Preliminary Characterisation of New Silicate, Phosphate and Titanite Reference Glasses[J].Geostandards and Geoanalytical Research, 2008, 32(1): 39-54. doi: 10.1111/j.1751-908X.2008.00873.x

[40]

Audétat A, Garbe-Schönberg D, Kronz A, et al. Charact-erisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J].Geostandards and Geoanalytical Research, 2015, 39(2): 171-184. doi: 10.1111/ggr.2015.39.issue-2

[41]

Ulrich T, Kamber B S. Natural Obsidian Glass as an External Accuracy Reference Material in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research, 2013, 37(2): 169-188. doi: 10.1111/j.1751-908X.2012.00189.x

[42]

Danyushevsky L, Robinson P, Gilbert S, et al. Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry-Exploration Environment Analysis, 2011, 11(1): 51-60. doi: 10.1144/1467-7873/09-244

[43]

Gilbert S, Danyushevsky L, Robinson P, et al. A Compa-rative Study of Five Reference Materials and the Lombard Meteorite for the Determination of the Platinum-group Elements and Gold by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2013, 37(1): 51-64. doi: 10.1111/ggr.2013.37.issue-1

[44]

Wiedenbeck M, Alle P, Corfu F, et al. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses[J].Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/ggr.1995.19.issue-1

[45]

Black L P, Kamo S L, Allen C M, et al. TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochronology[J].Chemical Geology, 2003, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7

[46]

SláMa J, Koššler J, Condon D J, et al. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J].Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005

[47]

Stoll B, Jochum K P, Herwig K, et al. An Automated Iridium-strip Heater for LA-ICP-MS Bulk Analysis of Geological Samples[J].Geostandards and Geoanalytical Research, 2008, 32(1): 5-26. doi: 10.1111/j.1751-908X.2007.00871.x

[48]

Zhu L Y, Liu Y S, Hu Z C, et al. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2013, 37(2): 207-229. doi: 10.1111/j.1751-908X.2012.00181.x

[49]

Van Heuzen A A, Morsink J B W. Analysis of Solids by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)-Ⅱ.Matching with a Pressed Pelle[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 1991, 46(14): 1819-1828. doi: 10.1016/0584-8547(91)80208-K

[50]

Gomes M S, Schenk E R, Santos Jr D, et al. Laser Ablation Inductively Coupled Plasma Optical Emission Spectrometry for Analysis of Pellets of Plant Materials[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2014, 94-95: 27-33. doi: 10.1016/j.sab.2014.03.005

[51]

Athanassiou E K, Grass R N, Stark W J, et al. Chemical Aerosol Engineering as a Novel Tool for Material Science:From Oxides to Salt and Metal Nanoparticles[J].Aerosol Science and Technology, 2010, 44(2): 161-172. doi: 10.1080/02786820903449665

[52]

Wilson S A, Ridley W I, Koenig A E, et al. Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique[J].Journal of Analytical Atomic Spectrometry, 2002, 17(4): 406-409. doi: 10.1039/B108787H

[53]

Tomlinson E L, Thordarson T, Müller W, et al. Micro-analysis of Tephra by LA-ICP-MS-Strategies, Advantages and Limitations Assessed Using the Thorsmörk Ignimbrite (Southern Iceland)[J].Chemical Geology, 2010, 279(3-4): 73-89. doi: 10.1016/j.chemgeo.2010.09.013

引证文献(本文共被引用4次)

[1]

LA-ICPMS技术优化及应用[D]. 柴发达.合肥工业大学 2017

[2]

无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 孟郁苗,黄小文,高剑峰,戴智慧,漆亮.  岩矿测试. 2016(06)

[3]

CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J]. 吴石头,王亚平,詹秀春,Andreas Kronz,Klaus Simon,许春雪,田欢.  岩矿测试.2016(06)

[4]

地质全岩样品LA-ICP-MS整体分析的前处理方法[J]. 张晨西,苗琦,倪倩.  矿物岩石地球化学通报. 2016(03)

相似文献(共17条)

[1]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[2]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[3]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[4]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[5]

李洁, 陈文, 刘新宇, 张彦, 陈岳龙, 杨莉. 新生代透长石SK01作为39Ar-40Ar法定年标准物质的均匀性检验. 岩矿测试, 2013, 32(2): 213-220.

[6]

辛文彩, 夏宁, 徐磊, 朱志刚. 长江三角洲沉积物标准物质研制. 岩矿测试, 2017, 36(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201609210141

[7]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[8]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[9]

郭玉林, 才书林. X射线荧光光谱法在有色金属矿石标准物质定值分析中的应用. 岩矿测试, 1992, (3): 260-264.

[10]

金秉慧. 地质标准物质十年回顾. 岩矿测试, 2003, (3): 188-200.

[11]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[12]

马康, 杨冉, 王海峰, 何雅娟, 刘菲. 质量平衡法分析1,2,3,4-四氯苯的纯度分析与不确定度评定. 岩矿测试, 2013, 32(2): 334-339.

[13]

金秉慧. 今日的地质标准物质. 岩矿测试, 1992, (1): 130-141.

[14]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[15]

Mineral, of, Rock, Resources, Analysis, 100037), and, of, geology, and, Beijing, (Institute, mineral, Ministry. 岩石标准物质的研制. 岩矿测试, 1995, (2): 114-161.

[16]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[17]

田芹, 吴淑琪, 佟玲, 罗代洪. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

计量
  • PDF下载量(1356)
  • 文章访问量(1571)
  • HTML全文浏览量(20)
  • 被引次数(4)
目录

Figures And Tables

激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展

吴石头, 王亚平, 许春雪