【引用本文】 姚玉玲, 吴丽琨, 刘卫, 等. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J]. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012
YAO Yu-Ling, WU Li-kun, LIU Wei, et al. Determination of Nb and Ta in Ores and Metallurgical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Ethanol as a Sensitizer[J]. Rock and Mineral Analysis, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽

中国地质科学院矿产综合利用研究所, 四川 成都 610041

收稿日期: 2014-09-18  修回日期: 2015-03-05  接受日期: 2015-03-08

基金项目: 中国地质调查局地质调查项目(12120113014300)

作者简介: 姚玉玲, 工程师, 主要从事岩石矿物分析测试技术研究.E-mail: yaoyling@163.com。

Determination of Nb and Ta in Ores and Metallurgical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Ethanol as a Sensitizer

Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China

Received Date: 2014-09-18
Revised Date: 2015-03-05
Accepted Date: 2015-03-08

摘要:电感耦合等离子体发射光谱法(ICP-AES)在铌钽测定方面获得广泛应用, 但灵敏度较低、检出限较高, 不能满足矿石和选冶样品中的低含量铌钽的检测要求。本文优化了ICP-AES测试过程中多种有机试剂的增敏效果, 结果表明:样品采用氢氟酸-硝酸-硫酸敞开酸溶, 选择乙醇作增敏剂, 雾化效率最佳, 当乙醇浓度为6%时, 原子线Nb 292.781 nm、Ta 240.063 nm的灵敏度分别增强了180.5%和265.5%;铌的检出限由不加乙醇的5.85 μg/g降低到3.22 μg/g, 钽的检出限由不加乙醇的10.65 μg/g降低到5.03 μg/g; Nb2O5回收率为97.7%~101.9%, Ta2O5回收率为96.8%~97.2%;方法精密度(RSD) < 6%。本方法适用于低含量和高含量铌钽的同时测定, 尤其有利于选冶流程样品中同一批次的精矿、中矿和尾矿的同时测定, 克服了以往分别采用光谱法和质谱法测定所产生的仪器间误差导致回收率吻合程度不好的缺陷。

关键词: 矿石, 选冶样品, , , 敞开酸溶, 乙醇, 电感耦合等离子体发射光谱法

Determination of Nb and Ta in Ores and Metallurgical Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry with Ethanol as a Sensitizer

KEY WORDS: ores, metallurgical samples, niobium, tantalum, open acid-solution, ethanol, Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES)

本文参考文献

[1]

矿产资源综合利用手册编辑委员会. 矿产资源综合利用手册[M] . 北京: 科学出版社, 2000: 320-321.

The Editorial Committee of Mineral Resources Comprehensive Utilizaiton Manual . Mineral Resources Comprehensive Utilizaiton Manual[M] . Beijing: Science Press, 2000: 320-321.
[2]

刘卫, 栾亚兰, 仵丽萍, 等. 电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J]. 理化检验(化学分册), 2006, 42(9): 715-716.

Liu W, Luan Y L, Wu L P, et al. ICP-AES Determination of Nb and Ta in Products of Oredressing of Spodumene[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analgsis), 2006, 42(9): 715-716.

[3]

李韶梅, 王国增, 赵军, 等. 电感耦合等离子体原子发射光谱法测定铌铁中的铌和钽[J]. 冶金分析, 2012, 32(3): 48-50.

Li S M, Wang G Z, Zhao J, et al. Determination of Niobium and Tantalum in Ferroniobium by Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Metallurgical Analysis, 2012, 32(3): 48-50.

[4]

成勇, 彭慧仙, 袁金红, 等. 微波消解-电感耦合等离子体原子发射光谱法测定钒钛磁铁矿中锆铌钒铬[J]. 冶金分析, 2013, 33(3): 50-54.

Cheng Y, Pen H X, Yuan J H, et al. Determination of Zirconium, Niobium, Vanadium and Chromium in Vanadium Tatano-Magnetite Ore by Microwave Digestion Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Metallurgical Analysis, 2013, 33(3): 50-54.

[5]

Smolik M, Turkowska M. Method of Low Tantalum Amounts Determination in Niobium and Its Compounds by ICP-OES Technique[J].Talanta, 2013, 115: 184-189. doi: 10.1016/j.talanta.2013.03.065

[6]

Yang X J, Pin C. Determination of Niobium, Tantalum, Zirconium and Hafnium in Geological Materials by Extraction Chromatography and Inductively Coupled Plasma Mass Spectrometry[J].Analytica Chimica Acta, 2002, 458(2): 375-386. doi: 10.1016/S0003-2670(02)00076-4

[7]

时晓露, 刘洪青, 孙月婷, 等. 电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J]. 岩矿测试, 2009, 28(5): 427-430.

Shi X L, Liu H Q, Sun Y T, et al. Comparision of Two Different Sample Pretreatment Methods in Determination of Zr, Nb, Hf, Ta in Rocks by Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 427-430.

[8]

郝冬梅, 张翼明, 许涛, 等. ICP-MS法测定稀土铌钽矿中铍、铀、铌、钽、锆、铪量[J]. 稀土, 2010, 31(5): 67-69.

Hao D M, Zhang Y M, Xu T, et al. Determination of Beryllium, Niobium, Tartalum, Zirconium and Hafnium in Rare Earth-Niobium-Tartalum Mineral by ICP-MS[J]. Chinese Rare Earth, 2010, 31(5): 67-69.

[9]

张立峰, 张翼明, 周凯红, 等. 电感耦合等离子体质谱法测定钕铁硼中铝、钴、铜、嫁、锆、铽、钛、铌[J]. 冶金分析, 2011, 31(3): 50-54.

Zhang L F, Zhang Y M, Zhou K H, et al. Determination of Aluminum, Cobalt, Copper, Gallium, Zirconium, Terbium, Titanium, Niobium in Neodymium Iron Boron by Inductively Coupled Plasma Mass Spectrometry[J]. Metallurgical Analysis, 2011, 31(3): 50-54.

[10]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3): 312-320.

Gao H Y. Determination Systems of Nb and Ta in Geochemical Samples and Rare Earth Ores by ICP-MS and ICP-AES[J]. Rock and Mineral Analysis, 2014, 33(3): 312-320.

[11]

Ruiz M del C, Rodriguez M H, Perino E, et al. Determination of Nb, Ta, Fe and Mn by X-ray Fluorescence[J].Minerals Engineering, 2002, 15(5): 373-375. doi: 10.1016/S0892-6875(02)00039-0

[12]

安身平, 王树安, 廖志海, 等. X射线荧光光谱法测定镍基合金中镍、铬、钼、铌含量[J]. 理化检验(化学分册), 2009, 45(11): 1339-1340.

An S P, Wang S A, Liao Z H, et al. Determination of Nickel, Chromium, Molybdenum, Niobium in Nickel-base Alloy by X-ray Fluorescence Spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analgsis), 2009, 45(11): 1339-1340.

[13]

陆晓明, 金德龙. 离心浇铸制样-X射线荧光光谱法测定铌铁合金中铌硅磷[J]. 冶金分析, 2009, 29(3): 16-19.

Lu X M, Jin D L. Determination of Niobium, Silicon and Phosphorus in Ferrocolumbium by X-ray Fluorescence Spectrometry Using Sample Preparation Technique of Centrifugal Casting[J]. Metallurgical Analysis, 2009, 29(3): 16-19.

[14]

刘江斌, 赵峰, 余宇, 等. X射线荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素[J]. 岩矿测试, 2010, 29(29): 74-76.

Liu J B, Zhao F, Yu Y, et al. Simultaneous Determination of Nb, Ta, Hf, Ce, Ga, Sc and U in Geological Samples by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2010, 29(29): 74-76.

[15]

董永胜, 程昊阳, 盛名, 等. X射线荧光光谱法测定矿物中的铌钽钍锆[J]. 吉林地质, 2012, 31(4): 126-129.

Dong Y S, Cheng H Y, Sheng M, et al. Determination of Nb, Ta, Th, Zr by X-ray Fluorescence Spectrometry[J]. Jilin Geology, 2012, 31(4): 126-129.

[16]

Dampare S B, Nyarko B J B, Osae S, et al. Simultaneous Determination of Tantalum, Niobium, Thorium and Uranium in Placer Columbite-Tantalite Deposits from the Akim Oda District of Ghana by Epithermal Instrumental Neutron Activation Analysis[J].Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1): 53-59. doi: 10.1007/s10967-005-0860-0

[17]

徐娟, 郑诗礼, 郭奋, 等. 电感耦合等离子体原子发射光谱法测定钽中微量铌的多元光谱拟合干扰校正方法研究[J]. 冶金分析, 2010, 30(8): 1-6.

Xu J, Zheng X L, Guo F, et al. Research on the Multicomponent Spectral-fitting Interference Correction for the Determination of Micro Niobium in Tantalum by Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Metallurgical Analysis, 2010, 30(8): 1-6.

[18]

倪文山, 张萍, 姚明星, 等. 微波消解-电感耦合等离子体原子发射光谱法测定矿石中铌钽[J]. 冶金分析, 2010, 30(8): 50-53.

Ni W S, Zhang P, Yao M X, et al. Inductively Coupled Plasma Atomic Emission Spectrometric Determination of Niobium and Tantalum in Ore Sample after Microwave Digestion[J]. Metallurgical Analysis, 2010, 30(8): 50-53.

[19]

伏军胜. ICP-AES法测定铌钽原矿中Ta2O5、Nb2O5含量[J]. 湖南有色金属, 2010, 26(2): 66-67.

Fu J S. Determination of Ta2O5, Ta2O5 in Tantalite-Niobate Raw Ore by ICP-AES[J].Hunan Nonferrous Metals, 2010, 26(2): 66-67.

[20]

陈建国, 江祖成. 有机溶剂对镧和钇ICP光谱信号的增敏机理研究[J]. 分析科学学报, 2002, 18(4): 285-287.

Chen J G, Jiang Z C. Study on Enhancement Mechanism of Spectral Signals of Lanthanum and Yttrium in ICP with Organic Solvent Introduction[J]. Journal of Analytical Science, 2002, 18(4): 285-287.

[21]

储金树, 郑建明, 石榴花, 等. 乙醇对ICP-AES测Hg增敏效应的研究[J]. 分析试验室, 2010, 29: 146-148.

Chu J S, Zhen J M, Shi L H, et al. Study on Sensitizing Effect of Ethanol in Determination of Hg by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2010, 29: 146-148.

引证文献(本文共被引用7次)

[1]

酸溶-苯基荧光酮光度法测定矿样中钽[J]. 王冀艳,刘勉,赵晓亮,王君玉,曹立峰.  冶金分析. 2017(04)

[2]

微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J]. 马生凤,温宏利,李冰,王蕾,朱云.  岩矿测试. 2016(03)

[3]

西秦岭铷矿选冶试验中铷铌钽的分析技术研究[D]. 罗涛.成都理工大学 2016

[4]

三酸溶矿—等离子体质谱法同时测定广水—大悟地区矿调样品中的铜钨钼铌钽铍镧镱钇[J]. 宋红元,王孟金,张大波,李灵凤,肖洁.  资源环境与工程. 2015(06)

[5]

电感耦合等离子体发射光谱法测定铌钽的研究[J]. 张纹俊,李颖.  低碳世界. 2016(35)

[6]

电感耦合等离子体原子发射光谱法测定多金属矿石中的铌[J]. 王芳,魏丽娜,陈鲲,李惠珍,张舒朕.  理化检验(化学分册). 2017(02)

[7]

电感耦合等离子体原子发射光谱法测定镧玻璃废粉中五氧化二铌、二氧化锆和二氧化钛[J]. 周凯红,张立锋,刘晓杰,赵静.  冶金分析. 2016(12)

相似文献(共20条)

[1]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立. 岩矿测试, 2014, 33(3): 312-320.

[2]

邓长生, 李盛富, 张建梅, 王明力, 勒孚河, 牛芳红. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽. 岩矿测试, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

[3]

, 马玖彤, 李滦宁. 丹宁棉分离富集—发射光谱法同时测定地质样品中微量铌钽锆铪. 岩矿测试, 2001, (1): 27-30.

[4]

孙海玲, 姜莹, 钱程. P204萃淋树脂对地质样品中痕量铌和钽的分离富集研究及其应用. 岩矿测试, 2003, (1): 33-36.

[5]

马生凤, 温宏利, 李冰, 王蕾, 朱云. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽. 岩矿测试, 2016, 35(3): 271-275. doi: 10.15898/j.cnki.11-2131/td.2016.03.009

[6]

朱玉伦, 李淑玲. 二阶导数荧光光度法同时测定岩矿中铌和钽. 岩矿测试, 1991, (3): 161-165.

[7]

陶慧林, 朱仕毅, 郑省政. K比例H点标准加入吸光光度法同时测定矿样中铌和钽. 岩矿测试, 2010, 29(6): 703-706.

[8]

王建其, 林慈銮, 袁洪林, 柳小明, 第五春荣. 193 nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽. 岩矿测试, 2007, 26(1): 1-3.

[9]

杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148.

[10]

杨小莉, 杨小丽, 李小丹, 邵鑫, 杨梅. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素. 岩矿测试, 2014, 33(3): 321-326.

[11]

李刚, 姚玉玲, 李婧祎, 赵朝辉, 罗涛, 李崇瑛. 铌钽元素分析技术新进展. 岩矿测试, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223

[12]

李志伟, 赵晓亮, 李珍, 王烨, 王君玉. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素. 岩矿测试, 2017, 36(6): 594-600. doi: 10.15898/j.cnki.11-2131/td.201701030001

[13]

胡斌, 江祖成. 难熔元素铌钽铀锆在电热蒸发—等离子体发射光谱中氟化蒸发行为研究. 岩矿测试, 1993, (3): 183-188.

[14]

刘江斌, 刘建军, 赵继宏, 马旻, 冯春红, 黄兴华. 电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽. 岩矿测试, 2005, (2): 151-153.

[15]

, 宋旭文, 辛仁轩. 等离子体光谱进样系统乙醇溶液的雾化特性. 岩矿测试, 2002, (4): 284-290.

[16]

温宏利, 马生凤, 马新荣, 王蕾, 范凡, 巩爱华. 王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素. 岩矿测试, 2011, 30(5): 566-571.

[17]

王学伟, 彭南兰, 唐琦平, 金婷婷. 四酸溶样电感耦合等离子体发射光谱法测定地质样品中的钪. 岩矿测试, 2014, 33(2): 212-217.

[18]

魏轶, 窦向丽, 巨力佩, 张旺强, 赵伟华, 余志峰, 毛振才. 四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑. 岩矿测试, 2013, 32(5): 715-718.

[19]

陈波, 刘洪青, 邢应香. 电感耦合等离子体质谱法同时测定地质样品中锗硒碲. 岩矿测试, 2014, 33(2): 192-196.

[20]

黄光明, 蔡玉曼, 王冰, 乔爱香, 高孝礼, 江冶. 敞开酸溶-电感耦合等离子体光谱法测定钨矿石和钼矿石中微量元素. 岩矿测试, 2013, 32(3): 431-435.

计量
  • PDF下载量(1239)
  • 文章访问量(1873)
  • HTML全文浏览量(14)
  • 被引次数(7)
目录

Figures And Tables

乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽

姚玉玲, 吴丽琨, 刘卫, 李刚