

红土镍矿样品前处理方法和分析测定技术研究进展
1. | 甘肃出入境检验检疫局, 甘肃 兰州 730010 |
2. | 西北师范大学, 甘肃 兰州 730070 |
Research Progress on Sample Preparation Methods and Analytical Techniques for Nickel Laterite
1. | Gansu Entry-Exit Inspection and Quarantine Bureau, Lanzhou 730010, China |
2. | Northwest Normal University, Lanzhou 730070, China |
摘要:随着常规镍来源的硫化镍矿资源的日益枯竭, 可直接生产氧化镍、镍锍和镍铁等产品的红土镍矿倍受关注.对于红土镍矿中主量、次量、痕量元素的检测, 相同的检测项目存在多种测试方法, 且部分相同原理的测试方法存在细节上的差异, 使得检测者选择合适的检测方法变得困难.本文综述了近年来红土镍矿中24种元素测定的样品前处理方式及分析技术研究进展.样品前处理方式依据目标元素及后续的分析方法进行选择, 其中酸溶法和碱熔法用途最广.酸溶法引入的盐分少, 操作简单, 但是分解过程中易导致挥发元素As、Sb、Bi、Hg的损失, Cr易随高氯酸冒烟损失.碱熔法分解能力强, 适合分析Cr、Si、全铁等项目, 但会引入大量的盐类和因坩埚材料损耗而带入其他杂质, 给后续分析带来困难.红土镍矿的分析技术依据实验室条件及目标元素的性质和浓度进行选择.电感耦合等离子体发射光谱法(ICP-AES)是主量、次量元素的主要分析方法, 适合于分析含量为10-5~30%级别的金属元素; X射线荧光光谱法主要用于分析含量为10-3~1级别的元素, 尤其适合于测定Al、Si、Ti、V和P, 由于该方法的准确性依赖于一套高质量的标准样品, 故更适合炉前检测或检测大批红土镍矿样品.电感耦合等离子体质谱法(ICP-MS)最适合于分析10-4含量以下的重元素, 特别是稀土和贵金属元素.原子吸收光谱法(AAS)适合于分析10-4~10-2级别的Ca、Mg、Ni、Co、Zn、Cr、Mn等低沸点、易原子化元素.分光光度法主要用于分析Ni和P.原子荧光光谱法(AFS)主要用于分析As、Bi、Sb等易形成气态氢化物的元素.容量法主要用于分析Al、Fe、Mg和SiO2等主含量元素.尽管AAS、分光光度法、AFS法和容量法检测周期长, 但所用仪器为实验室常规配置, 可满足缺乏相应大型仪器实验室的日常检测.本文认为, 针对各种检测方法的适用性及存在问题, 应从开发微波消解法、固体进样直接测汞法、ICP-MS法以及Cr与其他元素同时分析的快速分析方法等方面开展研究, 建立灵敏、准确的检测方法, 从而更好地服务于红土镍矿的贸易、检验和综合利用.
Research Progress on Sample Preparation Methods and Analytical Techniques for Nickel Laterite
ABSTRACT With the depletion of common sulphide nickel resources, nickel laterite is becoming more attractive as nickel oxide, nickel matte and nickel-iron, amongst others, can be produced directly. For the determination of major, minor and trace elements in laterite nickel ore, many kinds of measurement methods for a given element and many differences of details between detection methods based on the same principle are available, making it difficult to select the appropriate method. Recent research in the pretreatment method and technology of the detection of a number of elements (Al, As, Bi, C, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, Mg, Mn, Ni, P, Pb, S, Sb, Sc, Si, Ti, Zn) in laterite nickel is reviewed in this paper. The proper pretreatment methods were selected according to the target elements and detection method. Acid dissolution and alkali fusion as the pretreatment methods are most widely used now. Although acid dissolution introduces less salt and operates more simply, the volatile elements such as As, Sb, Bi and Hg are often lost in the decomposition process, while Cr is frequently lost by smoking with perchloric acid. Alkali fusion has better decomposition ability for Cr, Si and total iron, while the subsequent analysis is difficult, because impurities as well as many other salts are introduced due to the loss of crucible material and the melting process. The determination techniques of nickel laterite are chosen on the basis of character and concentration of target elements and the equipment in the laboratory. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), which is suitable for the determination of elements content from 10-5 to 30%, is the main analysis method of major, minor and trace elements. X-ray Fluorescence Spectrometry (XRF) is used to analysis elements content of 10-3-1 in samples, especially for the detection of Al, Si, Ti, V and P. This method whose accuracy relies on a set of high quality standard sample is suitable for spot detection and determination of the large numbers of laterite nickel ore samples. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) is appropriate for determining heavy elements with the content of less than 10-4 in samples, especially for the rare earth and noble metal elements. Atomic Absorption Spectrometry (AAS) is adopted in the determination of the low boiling point elements with the content level ranging from 10-4 to 10-2 which are liable to atomization, such as Ca, Mg, Ni, Co, Zn, Cr and Mn. Spectrophotometry is mainly used for detecting the Ni and P, while Atomic Fluorescence Spectrometry (AFS) for the measurement of elements which were easily to form gaseous hydride such as As, Bi and Sb. Some main content elements, like Al, Fe, Mg and SiO2, are analyzed by Volumetry. Although the detection period is a little longer, AAS, Spectrophotometry, AFS and Volumetry which just need common equipment meet the daily determination in the laboratory which lacks large scale equipment. In order to solve the applicability and other existing problems, it is necessary to study the microwave digestion method, direct mercury analysis method, ICP-MS method, and rapid determination of Cr and other elements. The progress in establishing appropriate detection methods is certain to serve the trade, analysis and comprehensive utilization of laterite nickel ore.

本文参考文献
[1] |
苏征, 杨立明, 张岳胜, 等. 进口红土镍矿的检验现状及误差原因分析[J]. 有色金属, 2010, 62(4): 139-142. Su Z, Yang L M, Zhang Y S, et al. Inspection Actuality and Error Reason Analysis for Imported Laterite Nickel[J]. Non-ferrous Metals, 2010, 62(4): 139-142. |
[2] |
胡顺峰, 姜涛, 李海印, 等. 红土镍矿品质特点及检验方法探讨[J]. 中国矿业, 2008, 17(10): 82-89. doi: 10.3969/j.issn.1004-4051.2008.10.023 Hu S F, Jiang T, Li H Y, et al. The Quality Characteristics of Nickel-bearing Laterite and Discussing the Method for Inspecting It[J].China Mining Magazine, 2008, 17(10): 82-89. doi: 10.3969/j.issn.1004-4051.2008.10.023 |
[3] |
黄健, 曲强, 陈广文, 等. 进口红土镍矿中有毒有害元素对环境安全的影响[J]. 检验检疫科学, 2008, 18(3): 8-10. Huang J, Qu Q, Chen G W, et al. Study of the Effect of Poisonous and Harmful Elements Imported Laterite Nickel Ores on Environment Safety[J]. Inspection and Quarantine Science, 2008, 18(3): 8-10. |
[4] |
Warner A E M, Diaz C M, Dalvi A D, et al. JOM World Nonferrous Smelter Survey. Part Ⅲ: Nickel: Laterite[J].Jom, 2006, 58(4): 11-20. doi: 10.1007/s11837-006-0209-3 |
[5] |
Mudd G M. Global Trends and Environmental Issues in Nickel Mining: Sulfides Versus Laterites[J].Ore Geology Reviews, 2010, 38(1-2): 9-26. doi: 10.1016/j.oregeorev.2010.05.003 |
[6] |
胡顺峰, 王霞, 郭合颜, 等. 电感耦合等离子体发射光谱法测定红土镍矿石中镍铬镁铝钴[J]. 岩矿测试, 2011, 30(4): 465-468. Hu S F, Wang X, Guo H Y, et al. Determination of Ni, Cr, Mg, Al and Co in Nickel-bearing Laterite by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 465-468. |
[7] |
李昌丽, 蒋晓光, 汤淑芳, 等. 火焰原子吸收光谱法测定红土镍矿中铜含量[J]. 冶金分析, 2012, 32(10): 74-77. doi: 10.3969/j.issn.1000-7571.2012.10.013 Li C L, Jiang X G, Tang S F, et al. Determination of Copper in Laterite Nickel Ore by Flame Atomic Absorption Spectrometry[J].Metallurgical Analysis, 2012, 32(10): 74-77. doi: 10.3969/j.issn.1000-7571.2012.10.013 |
[8] |
Eliopoulos D C, Economou-Eliopoulos M, Apostolikas A, et al. Geochemical Features of Nickel-Laterite Deposits from the Balkan Peninsula and Gordes, Turkey: The Genetic and Environmental Significance of Arsenic[J].Ore Geology Reviews, 2012, 48: 413-427. doi: 10.1016/j.oregeorev.2012.05.008 |
[9] |
Zhu D Q, Cui Y, Hapugoda S, et al. Mineralogy and Crystal Chemistry of a Low Grade Nickel Laterite Ore[J].Transactions of Nonferrous Metals Society of China, 2012, 22(4): 907-916. doi: 10.1016/S1003-6326(11)61264-8 |
[10] |
屈太原, 李华昌, 冯先进, 等. 便携式能量色散X射线荧光光谱仪测定红土镍矿中7种元素[J]. 冶金分析, 2012, 32(3): 25-29. Qu T Y, Li H C, Feng X J, et al. Determination of Seven Elements in Laterite Nickel Ore by Portable Enemy Dispersive X-ray Fluorescence Spectrometry[J]. Metallurgical Analysis, 2012, 32(3): 25-29. |
[11] |
林忠, 李卫刚, 褚宁, 等. 熔融制样-波长色散X射线荧光光谱法测定红土镍矿中铁、镍、硅、铝、镁、钙、钛、锰、铜和磷[J]. 分析仪器, 2012, (4): 53-57. Lin Z, Li W G, Chu N, et al. Determination of Iron, Nickel, Silicon, Aluminum, Magnesium, Calcium, Titanium, Manganese, Copper and Phosphorus in Laterite Nickel Ores by Wavelength Dispersive X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Analytical Instrumentation, 2012, (4): 53-57. |
[12] |
张建波, 林力, 王谦, 等. X-射线荧光光谱法同时测定镍红土矿中主次成分[J]. 冶金分析, 2008, 28(1): 15-19. Zhang J B, Lin L, Wang Q, et al. Determination of Major and Minor Components in Nickel Laterite Ores by X-ray Fluorescence Spectrometry[J]. Metallurgical Analysis, 2008, 28(1): 15-19. |
[13] |
彭南兰, 李小莉, 华磊, 等. X射线荧光光谱法测定红土镍矿中多种元素[J]. 中国无机分析化学, 2012, 2(1): 47-50. Peng N L, Li X L, Hua L, et al. Determination of Multiple Elements in Nickel Laterite Ore by XRF Spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(1): 47-50. |
[14] |
YS/T 820, 红土镍矿化学分析方法[S]. YS/T 820, Methods for Chemical Analysis of Laterite Nickel Ores[S]. |
[15] |
SN/T 2763, 红土镍矿中多种成分的测定[S]. |
[16] |
刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681-693. Liu Y X, Li X J, Bai J F, et al. Review on Sample Pretreatment Methods and Determination Techniques for Inorganic Elements in Plant Samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681-693. |
[17] |
王小平. 不同分解方法对ICP-AES测定植物样品中元素含量的影响[J]. 光谱学与光谱分析, 2005, 25(4): 563-566. Wang X P. Comparison of Different Digestion Methods Used for the Decomposition of Plant Samples in Elemental Quantification by Using ICP-AES[J]. Spectroscopy and Spectral Analysis, 2005, 25(4): 563-566. |
[18] |
何飞顶, 李华昌, 袁玉霞, 等. 氢化物发生-原子荧光光谱法同时测定红土镍矿中砷锑铋[J]. 冶金分析, 2011, 31(4): 44-47. He F D, Li H C, Yuan Y X, et al. Determination of Arsenic, Antimony and Bismulth in Laterite Nickel Ore by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Metallurgical Analysis, 2011, 31(4): 44-47. |
[19] |
陈殿耿, 袁玉霞, 何飞顶, 等. 氢化物发生-原子荧光光谱法测定红土镍矿中砷[J]. 矿冶, 2012, 21(3): 97-99. Chen D Q, Yuan Y X, He F D, et al. Determination of Arsenic in Laterite Nickel Ores by Hydride Generation-Atomic Fluorescence Spectrometry[J]. Mining & Metallurgy, 2012, 21(3): 97-99. |
[20] |
孙宝莲, 张俊芳, 李波, 等. 氟硅酸钾滴定法测定红土镍矿中二氧化硅[J]. 冶金分析, 2012, 32(4): 65-69. Sun B L, Zhang J F, Li B, et al. Determination of Silicon Dioxide in Laterite Nickel Ores by Potassium Fluosilicate Titrimetric Method[J]. Metallurgical Analysis, 2012, 32(4): 65-69. |
[21] |
李波, 孙宝莲, 周恺, 等. 丁二酮肟光度法测定红土镍矿中的镍[J]. 稀有金属材料与工程, 2012, 41(10): 1867-1870. doi: 10.3969/j.issn.1002-185X.2012.10.038 Li B, Sun B L, Zhou K, et al. Determination of Nickel Content in Laterite Nickel Ores by Dimetylglyoxime Spectrophotometry[J].Rare Metal Materials and Engineering, 2012, 41(10): 1867-1870. doi: 10.3969/j.issn.1002-185X.2012.10.038 |
[22] |
周恺, 孙宝莲, 李波, 等. 火焰原子吸收光谱法测定红土镍矿中锌[J]. 冶金分析, 2011, 31(10): 57-61. doi: 10.3969/j.issn.1000-7571.2011.10.014 Zhou K, Sun B L, Li B, et al. Determination of Zinc in Laterite Nickel Ore by Flame Atomic Absorption Spectrometry[J].Metallurgical Analysis, 2011, 31(10): 57-61. doi: 10.3969/j.issn.1000-7571.2011.10.014 |
[23] |
李昌丽, 蒋晓光, 张彦甫, 等. 火焰原子吸收光谱法测定红土镍矿中铜、锌、铬含量[J]. 化学分析计量, 2012, 21(3): 24-27. Li C L, Jiang X G, Zhang Y F, et al. Determination of Copper, Zinc and Chrome Content in Laterite Nickel Ores by Flame Atomic Absorption Spectrometry[J]. Chemical Analysis and Meterage, 2012, 21(3): 24-27. |
[24] |
王虹, 冯宇新, 苏明跃, 等. 火焰原子吸收光谱法测定红土镍矿中铬[J]. 冶金分析, 2007, 27(9): 54-56. Wang H, Feng Y X, Su M Y, et al. Determination of Chromium in Laterite-Nickel Ore by Flame Atomic Absorption Spectrometry[J]. Metallurgical Analysis, 2007, 27(9): 54-56. |
[25] |
王国新, 刘烽, 吴广宇, 等. 微波消解-ICP-AES测定红土镍矿中的镍含量[J]. 光谱实验室, 2013, 30(3): 1230-1233. Wang G X, Liu F, Wu G Y, et al. Determination of Nickel in Laterite Ore by ICP-AES with Microwave Digestion[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(3): 1230-1233. |
[26] |
王国新, 许玉宇, 王慧, 等. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴铜[J]. 岩矿测试, 2011, 30(5): 572-575. Wang G X, Xu Y Y, Wang H, et al. Determination of Ni, Co and Cu in Laterite-Nlickel Ores by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(5): 572-575. |
[27] |
何飞顶, 李华昌, 冯先进, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定红土镍矿中的Cd、Co、Cu、Mg、Mn、Ni、Pb、Zn、Ca 9种元素[J]. 中国无机分析化学, 2011, 1(2): 39-41. He F D, Li H C, Feng X J, et al. Simultaneous Determination of Cd, Co, Cu, Mg, Mn, Ni, Pb, Zn and Ca in Laterite Nickel Ore by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(2): 39-41. |
[28] |
高亮. 碱熔-电感耦合等离子体原子发射光谱法测定红土镍矿中硅钙镁铝锰钛铬镍钴[J]. 冶金分析, 2013, 33(2): 51-54. Gao L. Determination of Silicon, Calcium, Magnesium, Aluminium, Manganese, Titanium, Chromium, Nickel and Cobalt in Laterite Nickel Ore by Alkali Fusion-Inductively Coupled Plasma Atomic Emission Spectrometry[J]. Metallurgical Analysis, 2013, 33(2): 51-54. |
[29] |
陈宗宏, 孙明星, 楚民生, 等. 微波消解等离子体发射光谱法测定铁矿石中14种元素的研究[J]. 化学世界, 2006, 47(7): 401-406. Chen Z H, Sun M X, Chu M S, et al. ICP-AES Determination of 14 Elements in Iron-ores Using Microwave-assisted Digestion[J]. Chemical World, 2006, 47(7): 401-406. |
[30] |
司银奎, 申世伟. 原子吸收分光光度法快速测定红土镍矿中镍[J]. 山东国土资源, 2011, 27(10): 47-48. doi: 10.3969/j.issn.1672-6979.2011.10.014 Si Y K, Shen S W. Determination of Rare Earth Elements in Geological Samples by Using Inductively Coupled Plasma Mass Spectrometry[J].Shandong Land and Resources, 2011, 27(10): 47-48. doi: 10.3969/j.issn.1672-6979.2011.10.014 |
[31] |
褚宁, 蒋晓光, 李卫刚, 等. 过硫酸铵-丁二酮肟光度法测定红土镍矿中的镍[J]. 岩矿测试, 2012, 31(3): 479-483. Chu N, Jiang X G, Li W G, et al. Determination of Ni in Nickel Laterite Ores by Ammonium Persulfate-Dimetylglyoxime Spectrophotometry[J]. Rock and Mineral Analysis, 2012, 31(3): 479-483. |
[32] |
王彤, 冯振华, 徐进勇, 等. 分光光度法测定高铁、高镁红土镍矿中的镍[J]. 中国无机分析化学, 2012, 2(2): 20-23. Wang T, Feng Z H, Xu J Y, et al. Determination of Nickel in Laterite-Nickel Ore with High Iron and High Magnesium by Spectrophotometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2012, 2(2): 20-23. |
[33] |
刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁[J]. 岩矿测试, 2013, 32(6): 893-896. Liu J M. Determination of Ni, Co, Mg, Al and Fe in Laterite Nickel Ore by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 893-896. |
[34] |
阮桂色. 重铬酸钾滴定法测定红土镍矿中全铁含量[J]. 矿冶, 2011, 20(4): 113-115. Ruan G S. Determination of Total Iron in Laterite Nickel Ore by Potassium Dichromate Titration[J]. Mining & Metallurgy, 2011, 20(4): 113-115. |
[35] |
魏红兵, 王虹, 李异, 等. 管式电阻炉加热红外吸收法测定红土镍矿中硫[J]. 冶金分析, 2008, 28(11): 65-67. doi: 10.3969/j.issn.1000-7571.2008.11.015 Wei H B, Wang H, Li Y, et al. Determination of Sulfur in Laterite-Nickel Ore by Infrared Absorption Method with Tube Resistance Furnace Heating[J].Metallurgical Analysis, 2008, 28(11): 65-67. doi: 10.3969/j.issn.1000-7571.2008.11.015 |
相似文献(共20条)
[1] |
齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98. |
[2] |
林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152. |
[3] |
余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150. |
[4] |
王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234. |
[5] |
杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148. |
[6] |
刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44. |
[7] |
徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76. |
[8] |
钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73. |
[9] |
王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78. |
[10] |
李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231. |
[11] |
刘久苗. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴镁铝铁. 岩矿测试, 2013, 32(6): 893-896. |
[12] |
李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200. |
[13] |
王国新, 许玉宇, 王慧, 刘烽, 吴骋, 胡清. 电感耦合等离子体发射光谱法测定红土镍矿中镍钴铜. 岩矿测试, 2011, 30(5): 572-575. |
[14] | |
[15] |
赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016 |
[16] |
刘曙, 沈劼, 周海明, 诸秀芬, 朱志秀, 李晨, 兰超. 电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征. 岩矿测试, 2015, 34(4): 436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010 |
[17] |
张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28. |
[18] |
尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196. |
[19] |
谭雪英, 张小毅, 赵威. 电感耦合等离子体发射光谱法测定煤及煤灰样品中21个主次微量元素. 岩矿测试, 2008, 27(5): 379-382. |
[20] |
德国耶拿分析仪器股份公司. 连续光源火焰原子吸收法应用报告——发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2007, 26(5): 文后I-文后I. |
计量
- PDF下载量(16)
- 文章访问量(283)
- HTML全文浏览量(65)
- 被引次数(0)